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Strongly Inhibited Transport of a Degenerate 1D Bose Gas in a Lattice
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We report the observation of strongly damped dipole oscillations of a quantum degenerate 1D atomic
Bose gas in a combined harmonic and optical lattice potential. Damping is significant for very shallow
axial lattices (0.25 photon recoil energies), and increases dramatically with increasing lattice depth, such
that the gas becomes nearly immobile for times an order of magnitude longer than the single-particle
tunneling time. Surprisingly, we see no broadening of the atomic quasimomentum distribution after
damped motion. Recent theoretical work suggests that quantum fluctuations can strongly damp dipole
oscillations of a 1D atomic Bose gas, providing a possible explanation for our observations.
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The ability of highly degenerate quantum systems to
sustain dissipationless flow is one of the most striking
manifestations of quantum mechanics. However, transport
in such systems can be dramatically modified by the pres-
ence of a relatively weak but rapidly spatially varying
(‘‘corrugated’’) potential along the transport axis. For ex-
ample, the periodic potential of an optical lattice inhibits
transport in a degenerate Fermi atomic gas [1–3], but not,
in general, in a degenerate Bose gas [i.e., Bose-Einstein
condensate (BEC)] [4,5]. However, under certain condi-
tions, highly dissipative transport in a BEC in an optical
lattice [6–8] can arise from nonlinear dynamical insta-
bilities [9–11]. In low dimensional systems, of which 1D
atomic gases [12–16] and superconducting nanowires [17]
are important experimentally realized examples, a corru-
gated potential can cause dramatic changes in ground state
and transport properties.

We study inhibited transport in a 1D Bose gas in the
presence of an optical lattice along the 1D axis. In the
absence of such a lattice, dipole oscillations are undamped
[14], since it is a general result that the dipole mode of a
harmonically confined gas is unaffected by two-body in-
teractions (generalized Kohn’s theorem) [18]. This result
does not strictly hold for a combined harmonic and peri-
odic potential; nevertheless, undamped oscillations have
been observed in 3D BECs for small amplitudes and weak
interactions [5,19].

In this Letter, we report a study of strongly damped
dipole oscillations of a 1D Bose gas in a combined har-
monic and periodic potential, under conditions for which
undamped motion has been observed previously for 3D
BECs. This striking difference between one dimension
and three dimensions was recently reported qualitatively
in Ref. [13]. Here we measure the damped motion as a
function of axial lattice depth. Significant damping is
induced by very shallow lattices, and in deeper lattices
the motion is overdamped to the degree that the gas is
nearly immobile for times an order of magnitude longer
than the single-particle tunneling time. We emphasize, and
discuss further below, that the inhibited transport is not due
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to Bloch oscillations [4,20], where transport is frustrated
by Bragg reflection at the Brillouin zone (BZ) boundary, as
has been seen in previous experiments [1,2,7].

Our method to realize an ensemble of independent 1D
Bose gases is similar to earlier work [12]. We produce a
nearly pure 87Rb condensate of N � �0:8–1:6� � 105

atoms in the jF � 1; mF � �1i state in a Ioffe-Pritchard
magnetic trap (�x � �z � 29 Hz, �y � 8 Hz). We next
partition the BEC into an array of independent, vertical
1D ‘‘tubes’’ by adiabatically applying a transverse (in the
xy plane) 2D confining lattice [12–16,21]. The confining
lattice is ramped on during 200 ms to a depth of approxi-
mately 30ER (where ER � h2=2m�2 is the photon recoil
energy, and � is the laser wavelength). The combined
magnetic and optical potential results in approximately
5000 occupied tubes, each with an axial frequency of
!0=2� � 60 Hz. We observe a Thomas-Fermi density
envelope in the combined magnetic and optical potential,
and calculate [12] cloud radii of rx � 14�1� �m [22], ry �
20�1� �m, and rz � 10:6�5� �m for N � 1:4� 105. From
this, we estimate a peak 1D density of 4:8�4� � 104 cm�1

in the central tube, and a peak 3D density of 4:7�4� �
104 cm�3. Subsequently, we corrugate the tubes by adia-
batically applying, over 20 ms, an axial (vertically along z)
1D lattice. The Rayleigh length of the axial lattice beams is
large enough that they do not significantly modify the axial
harmonic potential. All lattice beams derive from a single
Ti:Sapphire laser operating at � � 810 nm, far detuned
from the atomic resonances at 780 and 795 nm. The pairs
of lattice beams are detuned from each other by 6 MHz,
making them effectively independent [23]. The final con-
figuration consists of three independent standing waves,
each formed from a pair of counterpropagating beams.

We excite dipole oscillations of the center of mass of
the atoms in all the tubes by suddenly (&150 �s) apply-
ing a linear magnetic field gradient, thus displacing the
total harmonic trap (but not the lattice) axially by z0 �
3 �m. This displacement is less than 30% of rz and
corresponds to approximately eight axial lattice sites
[24]. The waists of the Gaussian transverse lattice beams
3-1  2004 The American Physical Society
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(w0 � 210 �m) are much larger than both z0 and the size
of the trapped cloud.

The oscillation in the position of the atoms is too small
for our imaging system to clearly resolve. We therefore
observe oscillation in velocity by waiting a variable time tw
after the initial displacement, then suddenly turning off all
trapping potentials (with time constants of �250 �s and
�150 �s for the optical and magnetic potentials, respec-
tively), and imaging the position zTOF of the atoms after a
time of flight (TOF) tTOF � 18:4 ms. The velocity of the
atoms at tw is found by simple kinematics, and is approxi-
mately given by zTOF=tTOF. The turn-off of the optical
lattice is fast compared to the oscillation period, but slow
enough to avoid diffraction of the atoms (i.e., adiabatic
with respect to band excitations).

We observe damped dipole oscillations for axial lat-
tice depths from V � 0ER to 2ER, as seen in Fig. 1. In
the absence of an axial lattice, we observe oscillations (pe-
riod T � 15:4 ms) consistent with no damping [Fig. 1(a)],
indicating that tube-to-tube dephasing and trap anhar-
monicities are not significant on the time scale of our
experiments. However, the oscillations are noticeably
damped in a lattice only 0:25ER deep. Such a shallow
lattice modulates the atomic density by only 6%, and
modifies the single-particle energy-quasimomentum dis-
persion relation E�q� from that of a free particle around
only the last few percent of the BZ. [We note here, and
discuss further below, that the amplitude of motion is kept
well within the quadratic part of E�q� for shallow lattices.]

Beyond a lattice depth of �3ER the motion is over-
damped, and there are no oscillations. In this case, the
atoms’ velocity can be quite small, so we use a technique
that maps the atoms’ position in the trap to the cloud
position after TOF. The experiment proceeds as before,
except that after the trap is displaced by z0, the atoms are
allowed to relax toward their equilibrium position at z � 0
for a fixed time tw � 90 ms. We then rapidly (with time
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FIG. 1. Damped oscillations of a 1D Bose gas in an optical
lattice. Shown are plots of velocity versus wait time tw from
tw � 0 to 110 ms, and for axial lattice depths of (a) 0ER,
(b) 0:25ER, (c) 0:50ER, and (d) 2:0ER, where ER is the photon
recoil energy (see text).
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constant �250 �s) turn off only the axial lattice. The
remaining transverse lattice and magnetic potentials are
left on for 3.75 ms (approximately a quarter period of
undamped axial harmonic motion), then turned off simul-
taneously (as in the underdamped experiment). This con-
verts the axial displacement z�tw� into a velocity, which we
measure by TOF.

Figure 2(a) shows z�tw � 90 ms� as a function of axial
lattice depth. For the shallowest lattices, this wait time is
sufficient for the atoms to damp to the equilibrium position
z � 0. For the deepest lattices, the motion is so over-
damped that there is negligible motion during this time,
and the position remains z � z0. We note that, in the
absence of damping, atoms would tunnel through the lat-
tice to the equilibrium position in a time �T=4�

�������������
m	=m

p
,

where m	 is the effective mass. This time is only 8 ms for
noninteracting particles in a 10ER lattice. A comparison
can also be made to the tunneling time from the Mathieu
function treatment of band structure, 4h=�E � 15 ms,
where �E is the height of the band.

To quantify the damping, we model the motion as
damped simple harmonic, m	 �z � �b _z� kz, and extract
a damping constant b � b�V� for different axial lattice
depths V. For underdamped motion, we simultaneously
fit the oscillation data for eight depths to the expression
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FIG. 2. Overdamped motion of a 1D Bose gas in an optical
lattice. (a) Plot of the atoms’ position 90 ms after shifting the
trap, as a function of lattice depth. Inset depicts relaxation of the
atoms toward equilibrium. Immediately after the trap is dis-
placed to z0, the atoms (open circle) begin to move toward
equilibrium, reaching a displacement z from equilibrium after
90 ms (solid circle). Also shown is the initial position of the
atoms (dash-dotted line). (b) The 1=e half-widths of Gaussian
fits to axial TOF distributions (solid symbols), and the half-
widths of square transverse TOF distributions (open symbols)
resulting from a uniformly filled BZ (see text, and Fig. 4). Also
shown (dashed line) is the BZ calculated from lattice parameters.
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_z�t� � A
k

!m	
e�bt=2m	

sin�!t�;

where ! 

�������������������������������������
k=m	 � �b=2m	�2

p
, and A and k are fit pa-

rameters common across all V. For overdamped motion,
we determine b � b�V� from the overdamped solution for
z�tw�, which in the limit of strong damping simplifies to

z�tw� � z0

�
e�ktw=b

1� km	=b2
�

e�btw=m
	

1� b2=km	

�
;

where z0 and k are inputs derived from measurements of
undamped oscillations. In our analysis, we use a single-
particle calculation of the effective mass m	 [26].

Figure 3 shows a plot of b�V�=b0 versus lattice depth V,
where b0 
 2m!0 corresponds to critically damped har-
monic motion for !0 


���������
k=m

p
. We show data for both the

underdamped and overdamped regimes, and note that the
damping constant increases by at least a factor 1000 for a
30-fold increase in lattice depth.

The axial width of the cloud after TOF can provide
information about the distribution of atomic quasimomenta
in the lattice. The lattice turn-off time constant of 250 �s is
long enough to avoid diffraction, but short enough to be
nonadiabatic with respect to interwell tunneling and inter-
actions. (Related experiments in 2D [21] and 3D [25]
lattices support this conclusion.) In the absence of inter-
actions, and neglecting the initial size of the cloud, the
turn-off maps the single-particle quasimomentum distribu-
tion of atoms in the lattice to free-particle (i.e., plane-
wave) momentum states that can be directly observed in
TOF. In the presence of interactions, the mapping is com-
plicated by mean-field repulsion during TOF. A variational
calculation [27] indicates that mean-field repulsion is in
fact the dominant contributor to the axial TOF width in our
system. Therefore, the extracted TOF width greatly over-
estimates the width of a narrow initial quasimomentum
distribution.
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FIG. 3. Plot of the reduced damping constant b=b0 for various
depths V of the axial lattice, as determined using the under-
damped (squares) and overdamped (circles) experimental tech-
niques. Near critical damping (V � 3ER), the analysis cannot
distinguish between underdamped and overdamped motion, so
only upper and lower bounds are shown at V � 2:25 and 2.50.
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An example TOF image is shown in Fig. 4, together with
cross-sectional profiles of the optical depth along the axial
and transverse directions. The first BZ of the transverse
lattice is uniformly filled, producing a uniform, square
spatial distribution (in the xy plane) after TOF. Our imag-
ing system views this square distribution along the diago-
nal in the xy plane, resulting in a triangular profile, from
which we extract the width of the square [open symbols,
Fig. 2(b)]. In the axial direction the distribution is narrower
and reasonably well fit to a Gaussian, from which we
extract the axial (along z) TOF 1=e half-width [solid
symbols, Fig. 2(b)]. Even for the strongly overdamped
data, the axial TOF width (which, we recall, overstates
the width of narrow quasimomentum distributions) is much
narrower than the BZ. This implies that the inhibition of
transport is not due to effects related to Bloch oscillations
of a filled BZ, as observed in Refs. [1,7]. Furthermore, we
do not see a significant difference in TOF width between
atoms that undergo damped harmonic motion and those
that are unexcited but held for an equal time [28]. This is in
stark contrast to earlier experiments on 3D BECs [6,8,11],
where strong damping was accompanied by a pronounced
broadening and fragmentation of the quasimomentum
distribution.

Large amplitude dipole oscillations in a lattice can damp
due to dynamical instabilities caused by particle inter-
actions. For a 3D BEC moving in an optical lattice, such
an instability point occurs at q � q�=2 (q� 
 2�=� is the
BZ boundary), where the dispersion relation has an inflec-
tion point, as predicted in [9,10] and observed in [6,8,11].
This effect is manifested as a large increase in the width of
the quasimomentum distribution. Here, in contrast, we
keep the maximum (single-particle) quasimomentum
qmax of the oscillation small by limiting the initial energy
of displacement E�z0� � m!2

0z
2
0=2. For V < 2ER, our

choice of z0 corresponds to qmax � q�=5. For deeper lat-
tices, our fixed z0 corresponds to a larger qmax, but is
always less than q�=2 for V < 9ER. (In a separate experi-
ment, we excited oscillations in our system with twice the
usual amplitude, and saw stronger damping that was ac-
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FIG. 4. Cross sections (a) of a TOF absorption image (b) of the
expanded atom cloud. The plot of the transverse cross section
(along x) is offset vertically by 0.5 units for clarity. The solid
lines are Gaussian (triangular) fits to the axial (transverse)
profiles, respectively. The dashed ovals in (b) indicate the
peak-to-peak range of motion of undamped dipole oscillations.
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companied by a broadening of the axial TOF width by
nearly a factor of 2.)

For small amplitude dipole oscillations (qmax  q�=2)
of a 3D BEC in an optical lattice, the effect of the lattice is
merely to increase the effective mass, leading to undamped
motion at a lower frequency [5,19]. In the reduced dimen-
sionality system of our 1D Bose gas, we have seen that the
optical lattice has a qualitatively different effect. To high-
light the difference between these two situations, we ex-
cited dipole oscillations in a 3D BEC (i.e., no transverse
confining lattice) in a 4ER axial lattice, and saw no damp-
ing. This is in contrast to the results of the same experiment
in a 1D Bose gas (i.e., with a transverse confining lattice),
shown in Fig. 3, where b�V � 4ER�=b0 � 50 corresponds
to extremely overdamped motion.

After we performed these experiments, theoretical treat-
ments appeared which suggested that zero-temperature
quantum fluctuations can lead to substantial damping of
transport in a 1D atomic Bose gas [29,30]. Our observa-
tions, including the significant damping in lattices too
shallow to support a Mott-insulator phase [31], can be
explained by the mechanisms of Refs. [29,30], but appear
to be inconsistent with a mechanism involving incompres-
sibility [13].

It is possible that there is a temperature dependence to
the damping; unfortunately, we can derive little informa-
tion on temperature from the TOF widths. Future experi-
ments to investigate the temperature dependence could
shed light on the relative importance of quantum and
thermal fluctuations to dissipation, a question of interest
in, for example, the development of ultrathin supercon-
ducting wires [17]. We also look forward to testing other
explicit predictions of these theories, such as the depen-
dence of damping on displacement and dimensionality. We
note that the periodic potential of an optical lattice is free
from defects, and that 1D atomic Bose gases are well
isolated from the environment, yielding a relatively clean
system in which to compare experiment with theory. The
ability to continuously and dynamically vary the confining
potentials makes optical lattice experiments attractive for
future studies of superfluidity in low dimensional quantum
systems.
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[31] C. Kollath, U. Schollwöck, J. von Delft, and W. Zwerger,

Phys. Rev. A 69, 031601(R) (2004).
3-4


