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Nonadiabatic Landau-Zener Tunneling in Waveguide Arrays with a Step in the Refractive Index
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Landau-Zener tunneling is discussed in connection with optical waveguide arrays. Light injected in a
specific band of the Bloch spectrum in the propagation constant can be transmitted to another band,
changing its physical properties. This can be achieved using two coupled waveguide arrays with different
refractive indices. The step in the refractive index causes wave ‘‘acceleration’’ and thus induces strongly
nonadiabatic Landau-Zener tunneling. Theoretically, the analysis is performed by considering a
Schrödinger equation in a periodic potential with a step. The region of physical parameters where this
phenomenon can occur is analytically determined and a realistic experimental setup is suggested. Its
application could allow the realization of light filters.
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FIG. 1. Schematic picture of the combination of two wave-
guide arrays of the same spatial period but with different
refractive indices (different gray levels in the main plot). The
refractive index profile across the array with a step of size A is
shown in the upper inset.
When a quantum system is subject to an external force, a
nonadiabatic crossing of energy levels can occur. This
phenomenon is known as Landau-Zener tunneling [1,2],
and some of its recent observations are for Josephson
junctions [3] and optical effective two-level systems [4].
On the other hand, the problem of quantum motion in a
periodic potential was solved already in the 1920s (see,
e.g., [5]) and gives rise to band spectra and Bloch states.
Nowadays, the observation of Landau-Zener tunneling
between Bloch waves is at the frontier of research in
Bose-Einstein condensates (BEC) in optical lattices [6–
11]. The external forcing, responsible for Landau-Zener
tunneling, is created by either placing the BEC in a gravi-
tational potential [6] or accelerating the optical lattice
itself [7].

In this Letter we propose a new and experimentally
feasible way of generating Landau-Zener tunneling. We
consider waveguide arrays [12], where the periodic poten-
tial of the Schrödinger equation is provided by the spatial
oscillation of the refractive index in the transversal direc-
tion. Tunneling is caused by combining two waveguide
arrays with different refractive indices (see Fig. 1). As we
will see, this corresponds to creating a step in a periodic
potential. For arrays of coupled waveguides, the lon-
gitudinal direction z (see Fig. 1), along which the refrac-
tive index is constant, plays the role of ‘‘time’’ in the
stationary regime. The refractive index varies only along
the transversal direction x, which represents space. Various
linear and nonlinear phenomena have been observed in
waveguide arrays: discrete spatial optical solitons [13],
diffraction management [14], excitation of Bloch modes
[15], generation of multiband optical breathers [16] and
of single band-gap solitons [17], and anomalous band-
gap transmission regimes [18]. Fast progress in dis-
covering various nonlinear effects in waveguide arrays
has been possible due to the introduction of the tight-
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binding approximation [19–21], which reduces the non-
linear Schrödinger equation to the discrete nonlinear
Schrödinger equation [12]. However, such a reduction
eliminates the rich band structure of the periodic medium
and only a single Bloch band is left. On the contrary, we
want to maintain the band structure and, hence, study
transitions between the bands. Indeed, the coupling of
two waveguides with different refractive indices introduces
a step in the periodic potential and, consequently, Landau-
Zener tunneling. We consider here a strongly nonadiabatic
limit (sharp steps), because the Landau-Zener tunneling
rate is exponentially small in the adiabatic limit [6–11].
For the adiabatic case, we address the reader to Ref. [22],
where the observation of Bloch oscillations in waveguide
arrays subject to a temperature gradient has been reported.
In their Letter, the possibility of producing Landau-Zener
tunneling has been mentioned, without suggesting a spe-
4-1  2005 The American Physical Society
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FIG. 2 (color online). Schematic band-gap structure and pic-
ture of the Landau-Zener tunneling process. w is the gap be-
tween the bands (the height of the period potential), d is the
width of the upper band, and � is the initial detuning of the lower
band mode wave number from zone boundary. � is the dimen-
sionless propagation constant [see formula (5)] and �� �
���0� � �����. A is the height of the step. Initially, light is
injected in the left array, populating the lower band mode (a).
Going across the step, � decreases, reaching zero as the mode
approaches the zone boundary causing Landau-Zener tun-
neling (b). After tunneling, most of the light intensity is trans-
ferred to the upper band mode, whose wave number decreases
until the end of the step is reached. This is the light we observe in
the right array (c). A smaller light intensity remains in the lower
band and is observed in the left array (d).
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cific mechanism. In our Letter we propose a new and
efficient mechanism to produce this phenomenon. In the
following we study only transitions between the first two
bands, denoting them upper and lower bands. In particular,
we propose to inject light into the left waveguide array with
a given angle in order to populate the lower Bloch band and
retrieve it from the right waveguide array. Below, we derive
analytically the step size bounds inside which most of the
intensity of the lower band mode is transferred to the upper
band mode, creating also a spatial separation between
lower and upper band light. We demonstrate this effect
by performing numerical simulations of the Schrödinger
equation in a periodic potential with a step. The waveguide
array refractive index profile in the transversal direction x,
which has a periodic rectangular shape (see the upper inset
in Fig. 1), is approximated by a harmonic potential, while
the step in the refractive index is substituted by a slope ��
of height A. Such an approximation allows a simple ana-
lytical treatment of the problem. Thus, in the linear regime,
the adimensionalized Schrödinger equation of the optical
system can be written as follows (see, e.g., Ref. [23]):
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where � stands for the complex envelope of the electric
field and w is the height of the harmonic potential.
Moreover,

V�x� � 0 for x < 0;

V�x� � �A for x > A=�;

and V�x� � ��x for 0< x< A=�:

(2)

Via the simple transformation � ! �exp�izV�x��,
wave equation (1) gets a well-known form (see Refs. [9–
11]):
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where � plays the role of acceleration in the Landau-Zener
phenomenon. Let us note that if the potential would depend
only on the z coordinate, then it could be gauged away via
the transformation � ! �exp�iW�z��, with W0�z� �
V�z�. We should keep in mind that acceleration takes place
only within the step region 0< x< A=�, unlike the pre-
viously considered cases of BEC’s, where the whole con-
densate is accelerated (see, e.g., Ref. [11]).

Outside the step, where acceleration is absent, one can
write down the wave functions and the dispersion relations
in simple approximate form (see, e.g., [5]):
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where � � K � 1 is the wave number detuning from the
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zone boundary and the � (�) sign indicates the upper
(lower) band. � is the dimensionless propagation constant.
Note that with our conventions the zone-boundary mode
wave number is K � 1 and that the two mode approxima-
tion works better just in the vicinity of zone boundaries
(K ! 1), exactly where Landau-Zener tunneling takes
place.

The dispersion relations (5) for the two bands are sche-
matically shown in Fig. 2. The picture is similar to the one
observed in experiments [17]. Let us remark that at the
zone boundary (� ! 0), the amplitudes of the upper and
lower band modes are j��j � 2 sinx and j��j � 2 cosx,
respectively. This means that the light intensity in the lower
band is concentrated in between waveguide centers, while,
in the upper band, intensity is concentrated on waveguide
centers. This property is a clear experimental indication
whether the wave is in the lower or upper band.

In the step region the wave function � is written as
follows:

� � �a�z�eiKx � b�z�ei�K�2�x�: (6)

Following Ref. [9], we substitute Eq. (6) into the wave
equation (3). Assuming K � 1 and removing a common
phase dependence in a�z� and b�z� via the transformation
�a; b� ! �a; b�  exp��i�z� z3�=3�� (which allows us to
consider also the large � limit), we get the Landau-Zener
model [1,2] in its original form:
4-2
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FIG. 3 (color online). Landau-Zener tunneling from the lower
to the upper band. The step size A � 0:8 is taken within the
limits of Eq. (9). A step with a slope � � 2:4 is placed at x � 5
and the lower band mode is injected into the first five periods.
The inset shows the dependence of the transmission coefficient
on the step slope �. The solid line corresponds to the analytical
formula (10) and the crosses are numerical simulations.
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Thus, according to Landau-Zener’s result, tunneling from
the lower zone-boundary mode to the upper band takes
place with the following rate [1,2]:

r � exp���w2=�4���: (8)

The experimental setup could be as follows. One should
inject a lower band mode with nonzero but small relative
wave number �. This is accomplished by choosing for the
light beam a direction forming an angle � with respect to
the z direction, such that tan� � �. Hence, the wave front
will move towards the step. An analysis of the dependence
of the tunneling mechanism on the physical parameters
appearing in Fig. 2 shows that the transition to the upper
band mode is verified only if the step in the refraction index
A fulfills the following inequalities:

��� w< A<��� w� d; (9)

where �� � ���0� � ����� is the variation of the propa-
gation constant between the initial state and the zone
boundary and d is the width of the upper band.

Let us try to justify this result by commenting at the
same time on the results of some numerical simulations.
These are performed by fixing w � 0:5, � � 0:2 and tak-
ing the step size A � 0:8 within the above limits (9).
Waveguide centers are placed every period, with the first
waveguide at half a period from the left boundary. The
refractive index step with a slope � � 2:4 is placed in the
middle of the array. In such a setup the lower band mode
cannot overcome the step and when it reaches the zone
boundary Landau-Zener tunneling to the upper band oc-
curs. Light is partially transmitted to the right in the upper
band and reflected to the left in the lower band. This regime
is demonstrated in Fig. 3, which evidences, even visually,
the fact that light in the left array is concentrated in
between waveguides, while it lies at waveguide centers
on the right array. Let us emphasize here that neither the
transmitted nor the reflected wave undergo Bloch oscilla-
tions. This is due to the fact that the average refractive
index is constant everywhere outside the step and changes
nonadiabatically only in the step region. An adiabatic
regime is needed in order to observe Bloch oscillations in
waveguide arrays [22].

In order to prove quantitatively the validity of the use of
Landau-Zener formula (8), let us mention that only the
right going wave intensity of the Bloch wave function (4),
which is normalized to 1, reaches the step. Thus, the trans-
mitted wave intensity will be equal to r. Hence, we can
calculate the transmission coefficient T as the ratio of the
transmitted wave intensity to the total. Using again formula
(4), we finally get

T �
w2
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w2 � 4�2
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The comparison of this formula with numerical simula-
tions is presented in the inset of Fig. 3. The agreement is
very good and, as expected, the transmission coefficient
decays exponentially fast in the adiabatic limit � ! 0.

If the step size is higher than the upper bound of Eq. (9),
the lower band mode cannot overcome the step and total
reflection takes place (see the upper graph of Fig. 4).

On the other hand, if

A< ��; (11)

the lower band mode is able to overcome the step and to
penetrate to the right side without tunneling (see the lower
graph of Fig. 4). Indeed, wave intensity is now concen-
trated in between the waveguides and one can conclude
that only lower band modes are present in the array.

Finally, if the step is located within the following limits,

��< A<��� w; (12)

the wave on the left array has no counterpart with the same
propagation constant on the right array. Hence, no sta-
tionary penetration of the light through the step is possible,
more or less as in the upper graph of Fig. 4.

Concluding, a novel type of linear optical tunneling
effect is discovered. This is discussed in connection with
waveguide arrays which have a spatially oscillating refrac-
tive index. We explain this effect resorting to the Landau-
Zener model, which is commonly used for accelerated
quantum-mechanical two-level systems. In our case, tun-
neling between different bands takes place while a wave
passes through a step in the refractive index. In waveguide
arrays, Bloch bands in the propagation constant (light wave
number) play the role of energy bands in quantum me-
4-3
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FIG. 4 (color online). Upper graph: total reflection from the
step. The step size, A � 1, is greater than the upper bound of
Eq. (9). Lower graph: penetration through the step without
tunneling. The step size, A � 0:07, fulfills the inequality (11).
In both cases the step slope is infinite.
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chanics. Numerical simulations show that, if certain limits
in the refractive index step are respected, a spatial separa-
tion of light in different bands can be achieved. More
interesting for applications is, perhaps, the use of this
mechanism to build light wave number filters. Indeed, by
appropriately choosing the physical parameters, it could be
possible to shift the central wave number of a light beam
and to reduce the spread in both frequency or wave num-
ber. The inclusion of a weak nonlinearity does not quali-
tatively alter the picture, while strongly nonlinear cases
need a separate treatment. In particular, the study of the
scattering process of optical gap solitons with the step
could be of special interest. Moreover, the effect discussed
in this Letter should be generic for systems with periodic
potential and applications in different fields could be
found. For instance, the analysis of a similar process in
Bose-Einstein condensates is in progress.
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