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Observation of Flux Reversal in a Symmetric Optical Thermal Ratchet
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We demonstrate that a cycle of three holographic optical trapping patterns can implement a thermal
ratchet for diffusing colloidal spheres and that the ratchet-driven transport displays flux reversal as a
function of the cycle frequency and the intertrap separation. Unlike previously described ratchet models,
the approach we describe involves three equivalent states, each of which is locally and globally spatially
symmetric, with spatiotemporal symmetry being broken by the sequence of states.
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Brownian motion cannot create a steady flux in a system
at equilibrium. Nor can local asymmetries in a static po-
tential energy landscape rectify Brownian motion to induce
a drift. A landscape that varies in time, however, can eke a
flux out of random fluctuations by breaking spatiotemporal
symmetry [1–4]. Such flux-inducing time-dependent po-
tentials are known as thermal ratchets [5,6], and their
ability to bias diffusion has been proposed as a possible
mechanism for transport by molecular motors and is being
actively exploited for macromolecular sorting [7].

Most thermal ratchet models are based on spatially
asymmetric potentials. Their time variation involves dis-
placing or tilting them relative to the laboratory frame,
modulating their amplitude, changing their periodicity, or
some combination, usually in a two-state cycle. Chen
demonstrated that a spatially symmetric potential still
can induce drift in a cycle of three states, one of which
allows for free diffusion [8]. This idea since has been
refined [9] and generalized [10]. Thermal ratcheting in a
spatially symmetric double-well potential was demon-
strated for a colloidal sphere in a pair of intensity modu-
lated optical tweezers [11]. Directed transport also has
been induced in an atomic cloud by a symmetric rocking
ratchet created with an optical lattice [12].

Creating space-filling potential energy landscapes re-
quired for most ratchet models is challenging.
Furthermore, their relationship to the operation of natural
thermal ratchets has proved difficult to establish. This
Letter describes an experimental demonstration of a spa-
tially symmetric thermal ratchet implemented with holo-
graphic optical traps [13–15]. The potential energy
landscape in this system consists of a large number of
discrete optical tweezers [16], each of which acts as a
symmetric potential energy well for nanometer-to-mi-
crometer-scale objects such as colloidal spheres. We ar-
range these wells so that colloidal spheres can diffuse
freely in the interstitial spaces but are localized rapidly
once they encounter a trap. A three-state thermal ratchet
then requires only displaced copies of a single two-
dimensional trapping pattern. Despite its simplicity, this
ratchet model displays flux reversal [5,17] in which the
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direction of motion is controlled by the rate at which
particles diffuse and the ratchet’s cycling rate.

Often predicted, and inferred from the behavior of some
natural molecular motors and semiconductor devices [5],
flux reversal has been directly observed in comparatively
few systems. Flux reversal arises as a consequence of
stochastic resonance for a colloidal sphere hopping be-
tween the symmetric double-well potential of a dual opti-
cal trap [11]. Previous larger-scale demonstrations have
focused on ratcheting of magnetic flux quanta through
type-II superconductors in both the quantum mechanical
[18] and classical [19] regimes or else have exploited the
crossover from quantum mechanical to classical transport
in a quantum dot array [20]. Unlike the present implemen-
tation, these exploit spatially asymmetric potentials and
take the form of rocking ratchets [5]. A similar crossover-
mediated reversal occurs for atomic clouds in symmetric
optical lattices [12]. A hydrodynamic ratchet driven by
oscillatory flows through asymmetric pores also shows
flux reversal [21,22]. In this case, however, the force field
is provided by the divergence-free flow of an incompress-
ible fluid rather than a potential energy landscape, and so is
an instance of a so-called drift ratchet [21]. Other pioneer-
ing implementations of classical force-free thermal ratch-
ets also were based on asymmetric potentials but did not
exhibit flux reversal [23–27].

Figure 1 shows the principle upon which the three-state
optical thermal ratchet operates. The process starts out with
a pattern of discrete optical traps, each of which can
localize an object. The pattern in the initial state is sche-
matically represented as three discrete potential energy
wells, each of width � and depth V0, separated by distance
L. A practical trapping pattern can include a great many
optical traps organized into manifolds. The first pattern is
extinguished after time T and replaced immediately with
the second, which is displaced from the first by L=3. This is
repeated in the third state with an additional step of L=3,
and again when the cycle is completed.

If the traps in a given state overlap those in the state
before, a trapped particle is transported deterministically
forward. Repeating this cycle transfers the object in a
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FIG. 1 (color online). A spatially symmetric three-state ratchet
potential comprised of discrete potential wells.
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direction determined by the sequence of states and is
known as optical peristalsis [28]. The direction of motion
can be reversed only by reversing the sequence.

The optical thermal ratchet differs from this in that the
intertrap separation L is substantially larger than �.
Consequently, particles trapped in the first pattern are
released into a force-free region and can diffuse freely
when that pattern is replaced by the second. Those parti-
cles, such as the example labeled ‘‘forward’’ in Fig. 1, that
diffuse far enough to reach the nearest traps in the second
pattern rapidly become localized. A comparable propor-
tion of this localized fraction then can be transferred for-
ward in each successive step.

Unlike optical peristalsis, the stochastic ratchet transfers
only a fraction of the particles in each cycle. This, however,
leads to a new opportunity. Particles that miss the forward-
going wave might still reach a trap on the opposite side of
their starting point in the third state. These particles would
be transferred backward by L=3 after time 2T.

For particles of diffusivity D, the time required to diffuse
the intertrap separation is � � L2=�2D�. If we assume that
particles begin each cycle well localized at a trap, and that
the traps are well separated compared to their widths, then
the probability for ratcheting forward by L=3 during the
interval T is roughly PF � exp���L=3�2=�2DT��, while
the probability of ratcheting backwards in time 2T is
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roughly PR � exp���L=3�2=�4DT��. The associated
fluxes of particles then are vF � PFL=�3T� and vR �
�PRL=�6T�, with the dominant term determining the over-
all direction of motion. Flux reversal should occur when
T=� & �18 ln2��1 � 0:08.

More formally, we can model an array of optical traps in
the nth pattern as Gaussian potential wells,

Vn�x� �
XN

j��N

�V0 exp
�
�
�x� jL� n L

3�
2

2�2

�
; (1)

where n � 0, 1, or 2, and N sets the extent of the land-
scape. The probability density ��x; t�dx for finding a
Brownian particle within dx of position x at time t in state
n evolves according to the master equation [29]

��y; t� T� �
Z

Pn�y; Tjx; 0���x; t�dx; (2)

characterized by the propagator

Pn�y; Tjx; 0� � eLn�y�T��y� x�; (3)

where the Liouville operator for state n is
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�
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with V 0
n�y� �

dVn
dy , and where ��1 is the thermal energy

scale.
The master equation for a three-state cycle is

��y; t� 3T� �
Z

P123�y; 3Tjx; 0���x; t�dx; (5)

with the three-state propagator

P123�y; 3Tjx; 0� �
Z

dy1dy2P3�y; Tjy2; 0�P2�y2; Tjy1; 0�

� P1�y1; Tjx; 0�: (6)

Because the landscape is periodic and analytic, Eq. (5) has
a steady-state solution such that

��x; t� 3T� � ��x; t� � �123�x�: (7)

The mean velocity of this steady state then is given by

v �
Z

P123�y; 3Tjx; 0�
�
y� x
3T

�
�123�x�dxdy; (8)

where P123�y; 3Tjx; 0� is the probability for a particle
originally at position x to ‘‘jump’’ to position y by the
end of one complete cycle, �y� x�=�3T� is the velocity
associated with making such a jump, and �123�x� is the
fraction of the available particles actually at x at the
beginning of the cycle in steady state. This formulation is
invariant with respect to cyclic permutations of the states.
The average velocity v therefore describes the time-
averaged flux of particles.

Figure 2(a) shows numerical solutions of this system of
equations for representative values of the relative interwell
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separation L=�. If the interval T between states is very
short, particles are unable to keep up with the evolving
potential energy landscape and so never travel far from
their initial positions; the mean velocity vanishes in this
limit. The transport speed v also vanishes as 1=T for large
values of T because the induced drift becomes limited by
the delay between states. If traps in consecutive patterns
are close enough [L � 6:5� in Fig. 2(a)] particles jump
forward at each transition with high probability, yielding a
uniformly positive drift velocity. This transfer reaches its
maximum efficiency for moderate cycle times, T=� �

2
���
2

p
�L=����V0�

�1. More widely separated traps [L �
13� in Fig. 2(a)] yield more interesting behavior. Here,
particles are able to keep up with the forward-going wave
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FIG. 2 (color online). (a) Crossover from deterministic optical
peristalsis at L � 6:5� to thermal ratchet behavior with flux
reversal at L � 13� for a three-state cycle of Gaussian well
potentials at �V0 � 8:5, � � 0:53 �m, and D �
0:33 �m2= sec . Intermediate curves are calculated for evenly
spaced values of L. (b) Image of a 20� 5 array of holographic
optical traps at L0 � 6:7 �m. (c) Image of colloidal silica
spheres 1:53 �m in diameter interacting with the array.
(d) Rate dependence of the induced drift velocity for fixed
intertrap separation, L0. (e) Separation dependence for fixed
interstate delay, T � 2 sec .
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for large values of T. Faster cycling, however, leads to flux
reversal, characterized by negative values of v.

We implemented this protocol for a sample of 1:53 �m
diameter colloidal silica spheres (Bangs Laboratories, lot
No. 5328) dispersed in water, using potential energy land-
scapes created from arrays of holographic optical traps
[13–15]. The sample was enclosed in a sealed glass cham-
ber 40 �m thick created by bonding the edges of a cover
slip to a microscope slide and was allowed to equilibrate to
room temperature (21� 1 �C) on the stage of a
Zeiss S100TV Axiovert inverted optical microscope. A
100� NA (numerical aperture) 1.4 oil immersion
SPlan Apo objective lens was used to focus the optical
tweezer array into the sample and to image the spheres,
whose motions were captured with an NEC TI 324A low
noise monochrome CCD camera. The micrograph in
Fig. 2(b) shows the focused light from a 20� 5 array of
optical traps formed by a phase hologram projected with a
Hamamatsu X7550 spatial light modulator [30]. The
tweezers are arranged in 20-trap manifolds 25 �m long
separated by L0 � 6:7 �m. Each trap is powered by an
estimated 2:5� 0:4 mW of laser light at 532 nm. The
particles, which appear in Fig. 2(c), are twice as dense as
water and sediment to the lower glass surface, where they
diffuse freely in the plane with a measured diffusion coef-
ficient of D � 0:33� 0:03 �m2= sec , which reflects the
influence of the nearby wall. Out-of-plane fluctuations
were minimized by projecting the traps at the spheres’
equilibrium height above the wall [31].

We projected three-state cycles of optical trapping pat-
terns in which the manifolds in Fig. 2(b) were displaced
horizontally by �L0=3, 0, and L0=3, with interstate delay
times T ranging from 0.8 to 10 sec. The particles’ motions
were recorded as uncompressed digital video streams for
analysis [32,33]. Between 40 and 60 particles were in the
trapping pattern during a typical run, so that roughly
40 cycles sufficed to acquire reasonable statistics under
each set of conditions without complications due to colli-
sions. We also tracked particles outside the trapping pattern
to monitor their diffusion coefficients and to ensure the
absence of drifts in the supporting fluid. The results plotted
in Fig. 2(d) reveal flux reversal at T=� � 0:03. Excellent
agreement with Eq. (8) is obtained for �V0 � 8:5� 0:8
and � � 0:53� 0:01 �m.

The appearance of flux reversal as one parameter is
varied implies that other parameters also should control
the direction of motion [5]. Indeed, flux reversal is ob-
tained in Fig. 2(e) as the intertrap separation is varied from
L � 5:1 to 8:3 �m at fixed delay time, T � 2 sec. These
results also agree well with predictions of Eq. (8), with no
adjustable parameters. The same effect also should arise
for different populations in a heterogeneous sample with
different values of D, V0, and � [34,35]. In this case,
distinct fractions can be induced to move simultaneously
in opposite directions.
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Such sensitivity of the transport direction to details
of the dynamics also might play a role in the functioning
of molecular motors such as myosin-VI whose retrograde
motion on actin filaments compared with other myosins
has excited much interest [36]. This molecular motor is
known to be nonprocessive [37]; its motion involves a
diffusive search of the actin filament’s potential energy
landscape, which nevertheless results in unidirectional
hand-over-hand transport [38]. These characteristics are
consistent with the present model’s timing-based flux
reversal mechanism and could provide a basis to explain
how small structural differences among myosins could lead
to oppositely directed transport.
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