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Surface Plasmon Modes and the Casimir Energy
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We show the influence of surface plasmons on the Casimir effect between two plane parallel metallic
mirrors at arbitrary distances. Using the plasma model to describe the optical response of the metal, we
express the Casimir energy as a sum of contributions associated with evanescent surface plasmon modes
and propagative cavity modes. In contrast to naive expectations, the plasmonic mode contribution is
essential at all distances in order to ensure the correct result for the Casimir energy. One of the two
plasmonic modes gives rise to a repulsive contribution, balancing out the attractive contributions from
propagating cavity modes, while both contributions taken separately are much larger than the actual value
of the Casimir energy. This also suggests possibilities to tailor the sign of the Casimir force via surface
plasmons.
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When Casimir first predicted the existence of a force
between neutral mirrors in vacuum [1], he considered two
plane parallel perfect reflectors and found an interaction
energy ECas depending only on geometrical parameters,
the mirrors distance L and surface A � L2, and two fun-
damental constants, the speed of light c and Planck con-
stant �h:

ECas � �
�hc�2A

720L3 : (1)

The signs have been chosen to fit the thermodynamical
convention with the minus sign of the energy ECas corre-
sponding to a binding energy. The Casimir energy for
perfect mirrors is usually obtained by summing the zero-
point energies �h!

2 of the cavity eigenmodes, subtracting the
result for finite and infinite separation, and extracting the
regular expression (1) by inserting a formal high-energy
cutoff and using the Euler-McLaurin formula [2].

In his seminal paper [1], Casimir noticed that the energy
should be a finite expression, without the need of any
regularization, provided one takes into account the high-
frequency transparency of real mirrors. The idea was im-
plemented by Lifshitz, who calculated the Casimir energy
for mirrors characterized by dielectric functions [3]. For
metallic mirrors, he recovered expression (1) for separa-
tions L much larger than the plasma wavelength 	p asso-
ciated with the metal, as metals are very good reflectors at
frequencies much smaller than the plasma frequency !p.
At shorter separations, in contrast, the Casimir effect
probes the optical response of metals at frequencies where
they are poor reflectors and the Casimir energy is reduced
with respect to (1). This reduction has been studied in great
detail recently ([4,5], and references therein) since it plays
a central role in the comparison of theoretical predictions
([6], and references therein) with experimental results [7].

In the limit of small separations L � 	p, the Casimir
effect has another interpretation establishing a bridge be-
tween quantum field theory of vacuum fluctuations and
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condensed matter theory of forces between two metallic
bulks. It can indeed be understood as resulting from the
Coulomb interaction between surface plasmons, that is, the
collective electron excitations propagating on the interface
between each bulk and the intracavity vacuum [8–10]. The
corresponding field modes are evanescent waves and have
an imaginary longitudinal wave vector. We will call them
plasmonic modes at arbitrary distances as they coincide
with the surface plasmon modes at small distances.
Plasmonic modes have to be seen in contrast to ordinary
propagating cavity modes, which have a real longitudinal
wave vector. For simplicity, we will call those photonic
modes in the following. Photonic modes are usually con-
sidered in the quantum field theory of the Casimir effect [2]
and are thought to determine the Casimir effect at large
distances where the mirrors can be treated as perfect
reflectors. At short distances, plasmonic modes are known
to dominate the interaction [11,12].

The purpose of the present Letter is to show the singular
behavior of one of the two plasmonic modes, which gives
rise to a repulsive contribution to the Casimir energy at all
distances, ensuring in this way that the correct value for
the Casimir energy is recovered, in particular, the ideal
Casimir energy at large distances. Plasmonic modes there-
fore have a much greater importance than usually appre-
ciated. To show this, we will use the decomposition of the
Casimir energy as a sum of zero-point energies �h!

2 over the
whole set of modes of the cavity with its two mirrors
described by a plasma model. This set contains plasmonic
as well as photonic modes. As expected from [11,12], the
contributions of plasmonic modes will be found to domi-
nate the Casimir effect for small separations corresponding
to Coulomb interaction between surface plasmons. But,
contrary to naive expectations, they do not vanish for
large separations. For distances larger than about 	p=4�
(�10 nm for typical metals), they even give rise to a
contribution having simultaneously a negative sign and a
too large magnitude with respect to the Casimir formula
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FIG. 1. Mode plot of the first photonic TE modes (m �
1; 2; . . . ; 8) with the plasma model for ck � 0:5!p. Modes are
presented through their longitudinal wave vector as a function of
kL=�. The dotted lines correspond to the cavity modes with
perfect mirrors.
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(1). The repulsive character can be attributed to one of the
two plasmonic modes. The photonic modes as well as the
second plasmonic mode give rise to an attractive contribu-
tion much larger than (1). It is therefore the repulsive
contribution of a single plasmonic mode which renders
the total plasmonic mode contribution to the Casimir en-
ergy repulsive outside the short distance limit, while assur-
ing at the same time that the sum over all modes reproduces
(1) at large distances. This repulsive character may open
interesting possibilities to tailor surface plasmons via
nanostructuration of metallic surfaces in order to change
the sign of the total Casimir force.

In this Letter, we restrict our attention to the situation of
two infinitely large plane mirrors at zero temperature so
that the only modification of Casimir formula (1) is due to
the metals finite conductivity. This modification is calcu-
lated by evaluating the radiation pressure of vacuum fields
upon the two mirrors [5]:
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The energy E is obtained by summing over polarization
� � �TE;TM	, transverse wave vector k � �kx; ky	 (with z
the longitudinal axis of the cavity), and frequency !; kz is
the longitudinal wave vector associated with the mode. The
reflection amplitudes r�k, here supposed to be the same for
both mirrors, are causal retarded functions obeying high-
frequency transparency.

We now calculate the Casimir energy as a sum over the
cavity modes using the plasma model for the mirrors
dielectric function

"�!� � 1�
!2

p

!2 ; (3)

with !p the plasma frequency and 	p �
2�c
!p

the plasma
wavelength, of the order of 100 nm for metals used in
experiments [13]. In this case, the zeros of the argument of
the integrand in (2) lie on the real axis. In fact, they have to
be pushed slightly below this axis by introducing a vanish-
ing dissipation parameter in order to avoid any ambiguity
in expression (2) [5]. We may then rewrite (2) as a sum
over the solutions �!�

k�m of the equation labeled by an
integer index m,

r�k�!�2e2ikzL � 1: (4)

Simple algebraic manipulations exploiting residues theo-
rem and complex integration techniques [10] then lead to
the Casimir energy expressed as sums over these modes:

E �
X
�;k

�X0

m

�h�!�
k�m
2

�
L

L!1
: (5)
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The prime in the sum over m signifies as usual that the term
m � 0 has to be multiplied by 1=2. The sum over the
modes is to be understood as a regularized quantity as it
involves infinite quantities. This result is well known for
perfect mirrors and is not changed by the choice of the
plasma model for the mirrors reflection coefficients. The
upper expression contains as limiting cases at large dis-
tances the Casimir expression with perfect mirrors and at
short distances the expression in terms of surface plasmon
resonances. For arbitrary distances, photonic modes as
well as plasmonic modes are important.

We will now discuss the structure of TE and TM modes
inside the cavity formed by the two mirrors. The different
modes have been obtained by writing explicitly all solu-
tions of (4), using the standard expressions for the reflec-
tion coefficients. Figure 1 shows the phase shift acquired
by the TE modes through the influence of imperfect reflec-
tion. They are represented through their longitudinal wave
vector as a function of kL. The TE polarization admits only
photonic modes which can be written under the standard
form kzL � m�� �, where the integer m � 1; 2; . . . ;1 is
the order of the cavity mode and � the phase shift of the
mode on a mirror. Perfect mirrors lead to cavity modes
plotted as dotted lines corresponding to �TE � 0. With the
plasma model, the photonic modes are displaced compared
to the perfect cavity modes as a direct consequence of the
phase shift � acquired by vacuum fields upon reflection.
The limit of perfect reflection corresponds to the large
distances limit. The high-frequency transparency of metal-
lic mirrors imposes an upper bound to their longitudinal
wave vector ckz < !p, where all photonic modes coincide.

For TM polarization, similar photonic modes are ob-
tained, labeled also by a positive integer m. They are
accompanied by two additional modes, which we label
�!pl

k �� as they tend to the frequencies of surface plasmon
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modes [9] in the limit of small distances. These plasmonic
modes are shown as solid black lines in Fig. 2, while
photonic modes correspond to gray lines. In order to
make the plasmonic modes with their imaginary wave
vector visible, the modes are now represented through their
frequency as a function of kL. Plasmonic and photonic
modes lie, respectively, in the sector !< ck and !> ck.
In the limit of infinite mirrors separation, the plasmonic
modes are given by the usual dispersion relation for the
surface plasmons in a metallic bulk [9]:

�!pl
k �� !

L!1!2
p 
 2jkj2 �

������������������������
!4

p 
 4jkj4
q

2
: (6)

For the photonic modes the phase shift � tends towards
zero for infinite distances where they obey the dispersion

relation for perfect mirrors �!�
k�m �

��������������������
jkj2 
 k2z

q
, with the

longitudinal wave vector kz � m�=L. For L ! 1, the sum
over m in (5) becomes a continuous integral and the mode
contribution of photonic modes corresponds to the one of
free field vacuum which is subtracted from the contribution
at finite distances.

Let us now discuss in more detail the behavior of the two
plasmonic modes. !�

k is restricted to the plasmonic mode
sector, while !


k lies in the plasmonic mode sector for
large distances, but crosses the barrier ! � ck and dies in
the photonic mode sector for kL=� ! 0. In the present
calculation, the whole mode was attributed to the plas-
monic mode contribution as its frequency tends to the
surface plasmon contribution at short distances. The quali-
tative results do not change if the part of the mode lying in
the photonic modes sector is attributed to the photonic
modes contribution.

Obviously, when decreasing the distance L, the plas-
monic mode !


k acquires a phase shift with the same sign
as the TM photonic modes below the plasma frequency. Its
frequency at short distances is always larger than the one in
FIG. 2. Mode plot of the two plasmonic modes !�
k and !


k
(black lines) in the sector !< ck and of photonic modes (gray
lines) in the sector !> ck for ck � 0:5!p. Modes are presented
through their frequency as a function of kL=�.
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the large distance limit. In contrast, the frequency of !�
k is

decreased at short distances compared to long distances.
When now performing the difference (5) of the contribu-
tions at finite and infinite distances, the Casimir energy
contribution turns out to be negative for photonic modes, as
the mode contribution in free vacuum (L ! 1) exceeds the
one inside the cavity, in accordance with an attractive
force. It is also negative for the plasmonic mode !�

k .
However, the difference is positive for the plasmonic
mode !


k . An immediate consequence is that the contri-
bution of !


k to the Casimir energy is repulsive.
To assess quantitatively the effect of the plasmonic

modes to the Casimir energy, we have computed separately
the energies associated with photonic modes �!�

k�m and
plasmonic modes �!pl

k ��. All energies in the following will
be presented as a reduction factor � [13]:

E � �ECas: (7)

As the ideal Casimir energy is negative corresponding to
attraction, positive and negative reduction factors mean,
respectively, attractive or repulsive interaction. The reduc-
tion factor due to imperfect reflection described with the
plasma model is shown as a solid line in Fig. 3 as a function
of the ratio L=	p. We also introduce reduction factors
corresponding to contributions of the different modes to
the Casimir energy:

�ph � Eph=ECas; �pl � Epl=ECas:

Their sum corresponds to the whole Casimir energy � �

�ph 
 �pl. The contribution �pl of plasmonic modes
(dashed line) dominates at short distances L � 	p, which
confirms the interpretation of the Casimir effect as result-
ing in this regime from the Coulomb interaction of surface
plasmons. There, a simple expression may be given for the
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FIG. 3. Contributions to Casimir energy normalized to (1) of
photonic modes (dotted line) and plasmonic modes (dashed line)
to the total Casimir energy (solid line) as functions of L=	p. The
inset shows the separate contributions of !�

k and !

k .
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reduction factor [11,14]:

� ’
L�	p

3�
2

L
	p

; � ’ 1:193: (8)

The power law dependence of E then goes from L�3 at
large distances to L�2	�1

p at short distances [3]. The con-
tribution of photonic modes �ph scales as �L=	p	

4, and its
contribution may be neglected at the 1% level up to
L=	p � 0:2. At larger distances, �ph increases, while �pl

becomes negative at a distance of the order 	p=4�. This
clearly comes from the behavior of !


k , shown in the inset,
which gives a repulsive contribution at all distances. For
example, the photonic and the plasmonic contribution to
the Casimir energy at 	p=L� 1 are both about 36 times
larger than the total Casimir energy between metallic
mirrors. They are of opposite sign while the photonic
contribution slightly dominates. For large separations
L=	p � 1, �ph tends to 
1, while �pl tends to �1.
The sum of the two contributions reproduces the known
value for �, which is positive and increasing over all
separations going from (8) to unity for large distances,
where the Casimir formula (1) is recovered. This feature
results from a compensation between the large positive
value of �ph and the large negative value of �pl. More
precise asymptotic laws for the two contributions are

�ph � 1 ’
L�	p

� �pl ’
L�	p

�

������
L
	p

s
; � ’ 74:58: (9)

The behavior of the whole reduction factor is also recov-
ered, � ’

L�	p

1� 2	p=��L	.

These results clearly show the crucial importance of the
surface plasmon contribution, not only for short distances
where it dominates the Casimir effect but also for long
distances. For metallic mirrors the existence of surface
plasmons are not an additional correction to the Casimir
effect, but inherent to it. A single plasmonic mode !


k
ensures consistency with the Casimir energy between me-
tallic mirrors at intermediate distances and with the
Casimir formula (1) for perfect mirrors. If we had calcu-
lated the Casimir effect by accounting only for the pho-
tonic modes, we would have found a result much too large.
The photonic modes and one of the plasmonic modes are
displaced by the phase shifts which induce a systemati-
cal deviation towards a larger magnitude of Casimir en-
ergy. The discrepancy which would be obtained in this
manner is cured only by the contribution of the !


k plas-
monic mode. The whole Casimir energy turns out to be
the result of a fine balance between the large attractive
photonic contribution and the large repulsive plasmonic
contribution. As already known from discussions of arbi-
trary dielectric mirrors [5], the outcome of this balance
keeps the sign of a binding energy. However, this result
relies heavily on the symmetry of the Casimir geometry
11040
with two plane mirrors. One might thus hope to change this
behavior by enhancing the contribution of plasmonic
modes, by changing the geometry, using, for example,
the hole arrays used to enhance the transmission of light
through metallic structures [15] or nanostructured metallic
surfaces. This could then play a role in microelectrome-
chanical systems in which the Casimir force is known to
have a great influence [16].
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