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Anisotropic pairing between fermion species with different Fermi momenta opens two-dimensional
areas of gapless excitations, thus producing a spatially homogeneous state with coexisting superfluid and
normal fluids. This breached pairing state is stable and robust for arbitrarily small mismatch and weak

p-wave coupling.
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Introduction.—Recently there has been considerable in-
terest in the possibility of new forms of superfluidity that
could arise when one has attractive interactions between
species with different Fermi surfaces. This is stimulated
by experimental developments in cold atom systems [1]
and by considerations in high-density QCD [2]. Possible
coexistence of superfluidity with gapless excitations is an
especially important qualitative issue. Spatially homoge-
neous superfluid states that coexist with gapless modes at
isolated points or lines in momentum space arise in a
straightforward way when BCS theory is generalized to
higher partial waves [3]. Gapless states also are well known
to occur in the presence of magnetic impurities [4] and,
theoretically, in states with spontaneous breaking of trans-
lation symmetry [5], where the gapless states span a two-
dimensional Fermi surface. Strong coupling between dif-
ferent bands also may lead to zeros in quasiparticle ex-
citations and gapless states [6]. For spherically symmetric
(s-wave) interactions a spherically symmetric ansatz of
this type naturally suggests itself when one attempts to
pair fermions of two different species with distinct Fermi
surfaces, and a pairing solution can be found [7-11]. The
stability of the resulting state against phase separation [12]
or the appearance of a tachyon in the gauge field (negative
squared Meissner mass) [13] is delicate, however [14,15].
It appears to require some combination of unequal masses,
momentum-dependent pairing interactions, and long-range
neutrality constraints. Here we demonstrate another pos-
sibility: direction-dependent interactions, specifically
p-wave interactions. In this case, stability appears to be
quite robust. It seems quite reasonable, intuitively, that
expanding an existing (lower-dimensional) locus of zeros
into a two-dimensional zone should be significantly easier
than producing a sphere of gapless excitations ‘‘from
scratch.” We shall show that it occurs even for arbitrarily
small coupling and small Fermi surface mismatch.

Interactions relevant to pairing can be dominated by
p-wave (or higher) harmonics under several circumstan-
ces. If the s-wave interaction is repulsive, it will not be
subject to the Cooper instability, and will not induce pair-
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ing. The Cooper instability can be regarded as an enhance-
ment of the effective interaction for attractive channels as
one integrates out high-energy modes near the Fermi sur-
face. Thus the effective Hamiltonian will come to resemble
the form we assume if the interspecies interactions are
repulsive in s wave but attractive in p wave. Fermi sta-
tistics forbids diagonal (intraspecies) s-wave interactions;
if the higher partial waves are repulsive, or weakly attrac-
tive, the model discussed here will apply. In the context of
cold atom systems, tuning to an appropriate p-wave
Feshbach resonance, as recently reported in [16], can
ensure interspecies p-wave dominance.

A crucial difference between the model we consider and
the conventional p-wave superfluid system, *He, lies in the
distinguishability of the paired species. So, although there
are two components, there is no approximate quasispin
symmetry and no analogue of the fully gapped B phase
[17]. In the absence of a magnetic field *He has an ap-
proximate SO(3); X SO(3)g X U(1) symmetry under
separate spatial rotations, spin rotations, and number,
which is spontaneously broken to the diagonal SO(3); ¢
in the B phase. The residual symmetry enforces a gap of
uniform magnitude in all directions in momentum space.
The systems we consider have quite different symmetry
and breaking patterns, for example, U(1); X U(1)4 X
U(1)g — U(1);_ 44+ for two spin-polarized species A, B
in a magnetic field, or SO3), X U(1), X U(1)z —
U(1); +4+p if the magnetic field can be neglected. The
reduced residual symmetry allows for an interesting
direction-dependent structure in momentum space. (In
the A phases *He pairs effectively as two separate single-
species systems, which again is quite different from our
setup.)

Experimental realizations of p-wave interaction in cold
atom systems have been reported recently in Ref. [18].
Feshbach resonance in the p wave occurs between “°K
atoms in f = 9/2, m; = —7/2 hyperfine states. This is in
contrast to the s-wave resonance, which occurs between
nonidentical f =9/2, my = —9/2 and f =9/2, m; =
—7/2 states [19]. A promising system for possible obser-
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vation of the p-wave breached pairing superconductivity is
a mixture of f =9/2, my = —9/2 and f =9/2, m; =
—7/2 atoms “°K tuned into the repulsive side of the s-wave
Feshbach resonance. Different densities (Fermi momenta)
of my = —9/2 and m; = —7/2 particles can be prepared
using different magnitudes of an initial additional magnetic
field, which is then removed. Large atomic relaxation times
ensure that the created (metastable) states will exist long
enough to allow formation of a superfluid phase.
Model.—Having in mind cold atoms in a magnetic trap
with atomic spins fully polarized by a magnetic field, we
consider a model system with the two species of fermions
having the same Fermi velocity vg, but different Fermi
momenta pp = I/vg. The effective Hamiltonian is
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J[k>. Here the attractive interspecies inter-
action is —V,,_y within the “Debye” energy 2wy around
the Fermi surface (wp >> I), and the intraspecies inter-
action is assumed to be either repulsive or negligibly small.

Excitations of the Hamiltonian (1), Elf = *, /f%, + Af, +
I, are gapless provided that there are areas on the Fermi
surface where / > A,. The gap equation at zero tempera-
ture,
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can be simplified by taking the integral over d¢,
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where v = pZ/(27%vg) is the density of states. In the last
expression it is assumed that / and A, are dimensionless,
and scaled with the Debye energy: [ — 2wpl, A, —
2wpA,. In deriving Eq. (3) we neglect the dependence of
Vp—k on the absolute values of p and k; this is valid for
wp <K Ep. At weak coupling we may linearize in the
partial wave expansion V(n,n’) =3, V,¥,,(n)Y; (n’).
Assuming p-wave dominance, we parametrize V(n, n’) =
g(n - n’) with g > 0. p-wave gap parameters can arise in
the forms Y,y and Y, describing polar and planar phases,
respectively.

Polar phase.—A,, ~ Yo(n). We look for a solution in
the form A, = A cos(n, z) where z is a fixed but arbitrary
direction (rotational symmetry is broken). The gap equa-
tion becomes
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where 6* = arccosz, for z =1/A <1, and 6* =0 for
z > 1. Performing the integrations (detailed calculations
will be given elsewhere [20]), we obtain the algebraic gap
equation,
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where y = A/A, is the relative magnitude of the gap
compared to its value at I = 0,
3
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for weak coupling. There is a factor of 3 in the exponent
with anisotropic interaction instead of 1 as in the s-wave
BCS. For small values of z the solution to the gap equation
is y =1— == with x = I/A,. We depict the solution of
the polar phase gap equation in Fig. 1, with the following
numerical values of the characteristic points: x, =
(4/3me)'/3 =0.538, y, =e /3 =0.717 [at point A,
y'(x) = o], ye = e~1/3/2 = 0.358 [at point C, y(x) = 0].

Planar phase.—A, ~ Y,;(n), A, ~Y,_;(n). We now
look for a solution in the form A, = A sin(n, z)e'?, where

y
1

0.8
0.6
0.4

0.2

X
0.2 0.4 0.6 0.8

FIG. 1. Solutions y(x) of the gap equation in the polar, m = 0,
and planar, m = 1, phases. The lower branch corresponds to
the unstable state. The branches merge at the points where
y'(x) — oo, beyond which there are no nonzero solutions of
the gap equation. The broken line A = I is included to guide
the eye.
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¢ is the polar angle in the plane perpendicular to z. The
gap equation becomes

2 /2
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where 6 = arcsinz, for z <1, and 6, = 7/2, for z > 1.
Performing the integration we obtain the algebraic gap
equation,
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where again y is the relative magnitude of the gap com-
pared to its value for a zero mismatch. For the planar phase,

§> ~ 1.15exp<—i>. ©)
6 vg

For small values of z the solution to the gap equation has
the formy =1 — % and x is defined as before. Note that
the planar phase gap is more robust than the polar phase,
being perturbed by the fourth power instead of the third.
Solution of the gap equation for the planar phase is de-
picted in Fig. 1, with the following numerical values of
the characteristic points: x4, = 0.674, y, = 0.787, z, =
x4/y4 = 0.856; xo = e~ /0 = 0.435.

Stability.—The condensation energy is given by (at
T=0)
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Evaluating this expression for z = I/A < 1, we obtain for
polar phase
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which is negative for z << 0.537, and for planar phase
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which is negative for z < 0.623. For our specific model
Hamiltonian, at weak coupling, the planar phase is more
stable. For I > A the condensation energy is always posi-
tive, indicating that the lower branches are unstable.
Following the standard methods in the theory of super-
conductivity [21] we calculate the supercurrents in our
system under the influence of the homogeneous in space
vector potential A. The supercurrent is anisotropic, j; =

N . A, with the components given by (k,, = Kyy)

Kee | = 1— ﬂ ddy [ cos?6 1O — |An|) (13)
Kax 2 ) Am | sin®0 | 7] A
For the polar phase, assuming z > 1 we find
Kz | — 1= 323/4773
|: Ky } 1 —3mz/4 + 373/8. (14

The coefficient k,, becomes negative at z = 0.480 («_, at
higher values of z = 0.752), indicating an instability with
respect to a transition into some inhomogeneous state
[probably similar to a Larkin-Ovchinnikov-Fulde-Ferrel
(LOFF) state]. For the planar phase,
- Z). (15)
-z

[ Koo } 32
KXX 4
The coefficients k,, and k_, always remain positive for the
whole range of z < 0.623 where the gap Eq. (8) has stable
solutions. Thus, we find that the planar phase has a lower
energy and a higher density of Cooper pairs than the polar
phase and is therefore more stable.

Specific heat.—The important manifestation of the BCS
states with gapless excitations is the appearance of the
term linear in temperature in the specific heat, which is
characteristic for a normal Fermi liquid. The specific heat
is given by

(1 T 2) ln(

d EJr on(E,
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where E; = *,/£2 + A + I. Atlow temperatures 7 << [

the first term in Eq. (16) gives an exponentially small
contribution. The second term, with £, in Eq. (16) is
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Performing the integration, we calculate the contribution
of the gapless modes to the specific heat at T << [ to be

_ [ g, polar phase,
= 6 {412, planar phase.

As expected, the ““‘normal’ contribution to the specific heat
is proportional to the area occupied by the gapless modes,
i.e., the I/A strip around the equator for the polar phase
and the I?/A? islands around the poles for the planar phase.

Conclusion and comments.—We have presented sub-
stantial evidence that our simple model supports the planar
phase gapless superfluidity in the ground state. For I << A
the gapless modes contribute high powers in terms of
mismatch, ~J* for the solution and ~/? for the heat
capacity; i.e., they represent small perturbations. The re-
sidual continuous symmetry of this state, and its favorable
energy relative to plausible competitors (normal state,
polar phase) suggest that it is a true ground state in this
model. The planar phase is symmetric under simultaneous

(18)
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axial rotation and gauge (i.e., phase) transformation. Also,
we obtain a positive density of superconducting electrons,
suggesting that inhomogeneous LOFF phases are dis-
favored at small /.

In some respects the same qualitative behavior we find
here in the p wave resembles what arose in the s wave [14].
Namely, isotropic s-wave superconductivity has two
branches of solution: the upper BCS which is stable
and—for simple interactions— fully gapped, and the
lower branch which has gapless modes but is unstable.
The striking difference is that in the p wave the upper
branch retains stability while developing a full two-
dimensional Fermi surface of gapless modes. Thus, the
anisotropic p-wave breached pair phase, with coexisting
superfluid and normal components, is stable already for a
wide range of parameters at weak coupling using the
simplest (momentum-independent) interaction. This bodes
well for its future experimental realization.

In our model, which has no explicit spin degree of free-
dom, gapless modes occur for either choice of order pa-
rameter with residual continuous symmetry. By contrast,
for *He in the B phase the p-wave spin-triplet order
parameter is a 2 X 2 spin matrix, containing both polar
and planar phases components, there are no zeros in the
quasiparticle energies, and the phenomenology broadly
resembles that of a conventional s-wave state [17]; in the
A phase (which arises only at T # 0 [22]) the separate up
and down spin components pair with themselves, in an
orbital p wave, and no possibility of a mismatch arises.

Experimentally, the microscopic nature of the pairing
state can be revealed most directly by probing the momen-
tum distribution of the fermions, including angular depen-
dence. Time of flight images, obtained when trapped atoms
are released from the trap and propagate freely, reflect this
distribution.

It is possible that the emergent Fermi gas of gapless
excitations develops, as a result of residual interactions,
secondary condensations. Also, one may consider analo-
gous possibilities for particle-hole, as opposed to particle-
particle, pairing. In that context, deviations from nesting
play the role that the Fermi surface mismatch plays in the
particle-particle case. We are actively investigating these
issues.
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