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Universal Power-Law Decay of the Impulse Energy in Granular Protectors
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Protecting a big impulse from outside is one of the important issues of our everyday life. A granular
medium is often used as a protecting material. The impulse inside a granular medium is a solitary wave
which may be confined temporarily to a particular region of the medium, which we call the granular
container that plays the role of the protector. We find a universal power-law behavior in time for the
leakage of the impulse energy confined inside various granular containers.

DOI: 10.1103/PhysRevLett.94.108001 PACS numbers: 45.70.–n, 02.70.Ns, 43.25.+y, 46.40.Cd
FIG. 1. Snapshots of a solitary wave before and after passing
an interface between two granular media of mass ratio 10. The
mass of a granule on the left side is 10 times larger than that on
the right side and no precompression is applied.
There could be various kinds of disastrous external
impacts, such as an earthquake, bomb explosion, automo-
bile collision, and so on. People hope to protect something
important from these mechanical impacts. One possible
way of effective protection is to confine the impulse to a
specific region. But it is practically impossible to confine
the impulse in a certain region perfectly and permanently.
However, one may construct an effective protector that
confines a strong impulse inside it for a short time and
makes the strong impulse into many weak impulses, then
releases them outside the protector little by little.
Confining a big impulse into a specific region, disintegrat-
ing it into many weak impulses, and releasing it with time
lag could be an effective way to protect against a strong
external impact. This kind of protection mechanism could
be realized in a specially prepared granular medium.

Granular matter is ubiquitous around us and has already
been used as a protector in our everyday life. However,
fundamental research for the granular protector has not
been done much because of its complication and nonlinear
nature [1]. It has been proved analytically [2,3] and nu-
merically [4] that the propagating mode in the granular
chain with power-law type contact force, i.e., F / �p,
where � is the squeezed distance between neighboring
grains, is a solitary wave. The solitary wave in a granular
chain with Hertzian contact force, p � 3=2, can be de-
scribed by a soliton in a continuum limit [5]. Some of
soliton properties predicted by theory [5] have been dem-
onstrated by experiment [6]. This soliton, or the solitary
wave, shows interesting anomalous features of propagation
when it passes an interface of a granular medium com-
posed of different granules, which are discriminated by
mass, size, and elastic property. In this Letter, we consider
spherical granules of the same size. Therefore, the ratio of
mass to elastic property is the only parameter that discrim-
inates granules. For simplicity, we assume the same elastic
property, and the granules are discriminated by their
masses only.

A known, but not widely known, anomalous feature of
the wave propagation in the granular chain is the total
transmission of a solitary wave along with impulse disinte-
gration when it passes the interface from the region of
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heavy granules to that of light granules [7,8]. The number
of disintegrated solitary waves depends on the strength of
precompression. But it is about the mass ratio of heavy to
light granules when the precompression is weak. An ex-
ample of disintegration of a big solitary wave into smaller
solitary waves is shown in Fig. 1. The leading solitary wave
after transmission is highest and fastest, i.e., the higher, the
faster. The followers are lower and slower gradually as
shown in Fig. 1 [7,9]. No impulse disintegration and no
total transmission occur when a solitary wave propagates
from the region of light granules to that of heavy granules.
This anomalous behavior of total transmission in an in-
homogeneous granular chain provides an idea of contain-
ing incident impulse inside a granular container.
Furthermore, the property of disintegration of a big solitary
wave into many smaller ones provides an idea of effective
protection by reducing a strong impulse into many weak
ones inside the granular container.

We propose a standard type of effective granular con-
tainer that is composed of a series of granular sections of
different contact force and mass as shown in Fig. 2(a).
Three sections of linear medium are added for the walls of
the container. The scheme of effective protection is as
follows. An impulse reaching one end of the protector
1-1  2005 The American Physical Society
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FIG. 2. Schematic diagrams of granular containers. Circles,
grey octagons, and squares represent the granule of p � 1:5,
p � 2, and p � 1, respectively. The mass of the granule is
denoted by m. (a) is the standard type.
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proceeds up to the central section without reflection. But
the impulse disintegrates into small solitary waves when it
passes through each interface, because the mass of gran-
ules in each section decreases. This impulse disintegration
lasts until the leading solitary wave reaches the edge of the
central section. Then, both transmission and reflection
occur simultaneously at each interface when the solitary
wave proceeds from the central section to the side walls of
the granular container. The process of propagation inside
the granular container of Fig. 2(a) allows a time lag when
the disintegrated impulses leave the granular container.
Several variations, Figs. 2(b)–2(e), from the standard
type will be studied to compare the effectiveness of
protection.

The granular container as a practical protector must be
three-dimensional. Usual three-dimensional granular sys-
tems have complicated distribution of force chains through
which impulses may transmit. The nature of propagation of
an impulse inside a three-dimensional granular system is
not as simple as one shown in a one-dimensional chain.
Therefore, one must construct an artificial three-
dimensional protector by stacking granular chains to retain
the features mentioned above.

To study the time dependence of energy leakage from
the container, we focus on the motion of grains in a
horizontal granular chain with interfaces. Simulating the
motion of grains and studying propagating characteristics
of solitary waves has been done in many previous works
[4,5,7–11]. The equation of motion of a grain is determined
by the contact force between neighboring grains. For
spherical grains, the contact force follows Hertz’s law
[7,12],

F�
2E

3�1��2�

�����������������
R1R2

R1 �R2

s
��R1 �R2�� �x2 � x1��3=2; (1)
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where Ri is the grain radius, E is the Young’s modulus of
the material, � is Poisson’s ratio, and xi is the coordinate of
the center of the ith granule with x2 > x1. We consider in
this Letter a general power-type contact force. Then the
equation of motion of a grain under precompression �0 is
written as

m �un � ��f�0 � �un � un�1�g
p � f�0 � �un�1 � un�g

p�;

(2)

where ui is the displacement of the ith grain from its initial
equilibrium position due to external perturbation, m is the
mass of the grain, and � is the elastic constant of the grain
depending on its radius, Young’s modulus, and Poisson’s
ratio [6,7]. The only parameter governing Eq. (1) for a
given precompression is the ratio �=m. We fix � for all
grains and vary masses to discriminate different granules.
Therefore, in this Letter, heavy and light granules mean
small and large �=m, respectively. In our numerical simu-
lation, we set �0 � 0 under which a solitary wave is also
created [2,3].

We choose Hertzian contact for most granules. But
another nonlinear contact, p � 2, which corresponds to
grains with irregular surfaces such as sand [13], is used
in some cases. To perform numerical simulation for
Eq. (2), we choose 10�5 m, 2:36� 10�5 kg, and 1:0102�
10�3 s as the units of distance, mass, and time, respec-
tively. The integration time step has been kept at 1:25�
10�5, which corresponds to 1:26� 10�8 s in reality. Since
we take a snapshot in every 104 integration time step, the
real time interval of the snapshot is 0:126 ms.

The grain diameter used in this work is 100, i.e., 1 mm,
and � � 5657. For the case of the stainless steel ball [6],
� � 2618� 106�N=m3=2� for a diameter of 1 mm. To
make our simulation data realistic for a stainless steel
ball of diameter 1 mm, time rescaling by
�5657=2618�1=2 � 10�3t is required in Eq. (2). Thus, the
time interval of the snapshot for a stainless steel ball of
diameter 10�3 m becomes 0:40 �s.

Figure 3 shows energy leaking in the form of small
solitary waves leaving out of the granular container of
Fig. 2(a) with 20 granules in each section. But the mass
of a granule in three p � 1 sections has been changed into
m � 10 instead of m � 2. To see the leaking solitary
waves from the container, we put heavy Hertzian grains
of m � 100 in either side of the container. Then we apply
an initial impulse to the right end of the granular chain
using a grain of mass 100 with velocity 10 in our program
units, which corresponds to 5:4� 106 m=s for the steel
ball mentioned above. Figure 3 is the 280th snapshot of
grain velocity which corresponds 0:112 ms after the colli-
sion for the steel ball mentioned above.

It is interesting to see the energies of small solitary
waves leaving out of the granular container. The energy
of a solitary wave is the sum of the mechanical energies of
grains participating in solitary waves. The number of
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FIG. 3. The 280th snapshot of energy leakage for the granular
container of Fig. 2(a). The container ranges from 121 to 300 in
grain number, and granules of m � 100 are placed outside the
container.
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FIG. 4. Impulse energies remaining inside the granular con-
tainer of the types in Fig. 2. Time scale denotes the number of
snapshots.
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FIG. 5. The log-log plots of the data of Fig. 4 expressed by
time rescaling. Times are rescaled by multiplying 2, (2=9), and 9
for the data designated by stars, open squares, and solid squares,
respectively.
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grains composing a solitary wave is approximately 5 for
any height of solitary wave. This is a unique property of the
Nesterenko soliton [5] appearing in a granular chain. The
energies of leading solitary waves leaving the granular
container appearing at the right and left ends of the snap-
shot of Fig. 3 are, respectively, 3.3% and 7.7% of the
energy of the incident solitary wave. One can see that a
strong initial impulse incident on the granular container is
broken into small solitary waves whose individual energy
is less than 10% of the original energy when they leave the
granular container. Therefore, designing a specific granular
container is a way of constructing an effective protector.

It is natural for us to pay attention to the remaining
energy inside the granular container as time elapses. A
fascinating universal behavior is discovered in the
energy-leaking process from the granular container.
Figure 4 shows the plots of the energy remaining inside
the granular container versus elapsed time for those varia-
tions of Figs. 2(b)–2(e) alongside the standard case of
Fig. 2(a). Figure 2(b) has the same structure as the standard
one, but the sequence of sections in the right half is
reversed. Figure 2(c) has the same 60 granules of mass
0:1 and p � 1:5 on each side of the central section.
Figure 2(d) has the same structure as the standard type,
but the number of granules in each section is 50 instead
of 20. Finally, we introduce the simplest granular container
composed of the same 180 nonlinear granules of p � 1:5
and m � 1:0 without linear walls as shown in Fig. 2(e). As
one might expect, increasing the number of granules in
each section, such as Fig. 2(d), will cause slower leaking,
while using the same mass of granules, such as Fig. 2(c),
will cause faster leaking. The reason for slower or faster
leaking of energy surely stems from the time taken for a
solitary wave to pass from one edge of the container to the
other edge. To see this more clearly, we add the one shown
in Fig. 2(e) for comparison, which takes the shortest
10800
elapsed time passing from one end to the other and results
in the fastest leakage.

A remarkable universality behavior of energy leaking
from different types of granular containers is seen if we
replot the same data of Fig. 4 on a log-log scale in Fig. 5
through time rescaling. We rescale time by 2t, 0:22t, and 9t
for (c), (d), and (e) of Fig. 2, respectively. Falling on a
single line after proper scaling stresses that the nature of
energy leaking is universal, i.e., the same power-law ex-
ponent in time. In other words, the essential time depen-
dence of energy leaking from the granular container is
independent of its construction. The inverse scaling factors
qualitatively describes relative time scale for a solitary
wave to stay inside a granular container.

The universal power-law behavior in time for the energy
leaking from the granular container is a new discovery.
Therefore, understanding of the universal power-law be-
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havior is an interesting subject to pursue. One can under-
stand that energy leaking from the container occurs when a
solitary wave undergoes both transmission and reflection at
the interface in the edge of the container. This happens
when a solitary wave passes through the interface from a
light- to a heavy-granular medium. In this process of
energy leaking, the solitary wave decreases its height and
speed. Therefore, the energy remaining inside the granular
container depends on the number of reflections at both
interfaces of the container walls, and the number of re-
flections is proportional to the speed of the solitary wave
and inversely proportional to the length of the container.
One may construct an equation of motion for the energy
remaining inside the granular container based on this
analysis.

If there were no reduction in the speed of the solitary
wave after reflection, one may easily guess that the remain-
ing energy would decay exponentially. That is, the equa-
tion of motion for the remaining energy is written as
ER�t��t� � ER�t� � �k�tER�t�, where k is the inverse
of the time constant. The energy decay in this study,
however, is not this simple, because the speed of the
solitary wave is not constant but decreases after reflection.
Therefore, the constant k is not constant any more but time
dependent. According to the analysis above, k must be
replaced by hNr�t�i that is the averaged number of reflec-
tions per unit time at time t. Thus, the change in the energy
remaining inside the granular container is written as
ER�t��t� � ER�t� / �hNr�t�i�tER�t�. Since the speed
of the solitary wave decreases after every reflection,
hNr�t�i must decrease also. One can infer the time-
dependent behavior of hNr�t�i as hNr�t�i / 1=t from the
data of Fig. 5. Then, we finally set up the equation of
motion for the change in the remaining energy as follows:

ER�t��t� � ER�t� � ����t=t�ER�t�; (3)

which gives the solution

ER�t� � At��; (4)

where � is a universal dimensionless constant and the
constant A depends on the structure of the granular con-
tainer, such as the length of the container and the arrange-
ment of the granules. Figure 5 gives � � 0:7055 and
A � 65:31� ��, where � is the time scaling factor. We
choose � � 1 for our standard type of Fig. 2(a).

In conclusion, we find an interesting universal behavior
in energy leaking from a granular container. Various types
of granular container show the same power-law type
energy-leaking behavior in time. We understand that this
power-law behavior stems from the decreasing of the speed
of a solitary wave after the reflection accompanying trans-
mission, through which mechanism the energy of impulse
leaks from the container. Reduction of the speed of the
10800
solitary wave in time causes a reduction in the average
number of reflections per unit time as time elapses. The
universal power-law behavior in time of the energy remain-
ing inside the granular container implies that the rate of
energy leakage becomes slower due to the slowing down of
solitary waves after reflection accompanying transmission
and it is proportional to �1=t�. A big solitary wave produced
by a strong external impulse is broken into many small
solitary waves when it passes an interface from a small
�=m- to a large �=m-granular medium. Therefore, a
granular container having multiple interfaces with an ap-
propriate alignment of �=m may play a role as an effective
protector for an external impulse.

The mechanism of protection is holding the energy
carried by solitary waves inside the container and releasing
the energy little by little in the form of separate solitary
waves as shown in Fig. 3. The phenomena of impulse
confinement and disintegration appearing in a granular
chain discussed here may also appear in other systems,
such as electromagnetic devices and biomolecular chains,
if a power-law type nonlinear interaction exists between
the elements of the system. Application to these systems
would be more interesting.
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