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Smearing of Phase Transition due to a Surface Effect or a Bulk Inhomogeneity
in Ferroelectric Nanostructures

A. M. Bratkovsky1 and A. P. Levanyuk1,2

1Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304, USA
2Departamento de Fı́sica de la Materia Condensada, C-III, Universidad Autónoma de Madrid, 28049 Madrid, Spain

(Received 30 January 2004; published 14 March 2005)
0031-9007=
The boundary conditions, customarily used in the Landau-type approach to ferroelectric thin films and
nanostructures, have to be modified to take into account that a surface of a ferroelectric is a defect of a
field type. The surface (interface) field is coupled to a normal component of polarization and, as a result,
the second order phase transitions are generally suppressed and anomalies in response are washed out, as
observed experimentally.
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Theoretical studies of phase transitions in thin films and
the corresponding size effects within the Landau theory [1]
have been undertaken since the 1950s. Recently, the inter-
est in these questions has risen dramatically in view of the
applications of ferroelectric thin films [2] and a discovery
of various ferroelectric nanostructures [3]. The boundary
conditions for thin films were originally discussed by
Ginzburg and Landau (GL) in 1950 [4]. It was shown by
GL that, if the properties of the boundary layer are the
same as of the bulk, one arrives at the condition that the
gradient of the order parameter � vanishes at the surface,
~r ~n� � 0 (in zero magnetic field, ~n is the normal to the
surface). Starting from a microscopic theory, de Gennes
has shown that for a superconductor-metal interface with
no current and magnetic field a more general boundary
condition applies, ~r ~n�� �=� � 0, where � is the char-
acteristic length scale describing the proximity effect [5].
These conditions are very general and were introduced
phenomenologically by Kaganov and Omelyanchouk for
a surface of a ferromagnet [6] (cf. [7]). They assumed that
the surface energy was / �2. Kretschmer and Binder [8],
using the same boundary conditions, have taken into ac-
count the depolarizing field, present for a polarization
(magnetization) perpendicular to a surface. These bound-
ary conditions are customarily used in studies of phase
transitions in ferroelectric films (see, e.g., [9]).

The choice of a surface energy dependence on the order
parameter must be governed by symmetry considerations,
as it is for a bulk energy. Surface symmetry is different
from a symmetry of the bulk, and this is of special impor-
tance for ferroelectrics. A surface eliminates all symmetry
elements that change the direction of the normal to the
surface. If the order parameter (or one of its components) is
a vector perpendicular to the surface, the surface energy
contains a linear ‘‘field’’ term reminiscent of a ‘‘local field
defect’’ [10]. The ‘‘local field’’ is absent for superconduct-
ing or magnetic order parameters because the surface does
not break either gauge or time-reversal symmetry. A
Coulomb dipole field (double layer), contributing to the
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work function [11,12], and structural surface relaxation
(see, e.g., [13]) are different aspects of this phenomeno-
logical field. If the order parameter is not a vector, the field
term may appear in special cases if the surface eliminates
appropriate symmetry elements. If the field term is absent,
some higher order terms, forbidden in the bulk, can still be
allowed by the surface symmetry. We illustrate the effect of
new boundary conditions for the thin film of uniaxial
ferroelectric (FE). This is relevant also to perovskite ferro-
electrics that are cubic in the bulk but become tetragonal in
thin films because of elastic misfit with a substrate. Let the
surface be perpendicular to the polar axis z. The Landau-
Ginzburg-Devonshire (LGD) free energy for the bulk be-
tween electrodes 1 and 2 at z � �l=2 is [14,15]
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where P 	 Pz, and one adds to it the surface energy which,
generalizing Ref. [6], can be written in the form
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where � corresponds to a ‘‘temperaturelike’’ component of
the surface energy and w to its field component. We obtain
from Eqs. (1) and (2) the new correct boundary conditions
for ferroelectrics in the same way as in Ref. [6],

�1�2�P� �
�g
dP
dz

� w1�2�; z � ��
�l=2: (3)

In cgs units, one can estimate that �� dat, where dat is the
characteristic ‘‘atomic’’ length scale, on the order of the
lattice constant. The electric field at the surface [11,12] is
on the order of �s=dat � 1 V= 
A � 108 V=cm, where
q�s � 4 eV is the typical work function for ferroelectrics
[2]. The surface field corresponds to a polarization, which
is on the order of an atomic polarization Pat � q=d2at �
200 �C=cm2, so that w� Patdat. We expect that the struc-
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tural relaxation contribution to w is of the same order of
magnitude: from first-principles calculations at the ideal
surfaces of BaTiO3 and PbTiO3 the surface polarization
Psurf � 10
1Pat [13]. Usually, the top and bottom electrode
interfaces to the FE film are dissimilar and the thickness of
the surface polarized layers is �dat. This is enough to
produce a considerable field in the film. Indeed, the field
in the surface double layer is E1 � 
4�Psurf �
4�Pat.
If, for example, we consider a short-circuited film with
strongly asymmetric double layers at the interfaces (so that
the voltage drop on the second layer is much smaller than
the one on the first layer) the surface voltage drop �E1dat
must be compensated by the field in the bulk, Ebulk �

E1dat=l � 4�Pat=l. For example, in a film with a thick-
ness l� 1000 
A we find Ebulk � Patdat=l� 300 kV=cm,
which is very strong indeed. In a ferroelectric film this field
smears second order transitions and may smear a first order
phase transition. In a freestanding FE film the role of
electrodes would be played by a surface conductivity
and/or atmospheric ions. Note that in a rare case of sym-
metric surfaces the surface dipoles produce no electric field
in the film and no smearing of the phase transition occurs.
The polarization P�z� is found from the equation of state
for (1) and the Poisson equation:

AP� BP3 � CP5 
 gd2P=dz2 � E; (4)

d�E� 4�P�=dz � 0; (5)

�1=l�
Z 2

1
Edz � �’1 
 ’2�=l 	 E0; (6)

where E0 is the external electric field. We obtain from
Eqs. (5) and (6)

E � E0 
 4�
P�z� 
 "P�; (7)

where the overbar means an average over the film, i.e., "f �
�1=l�

R
2
1 dzf�z�. One probes experimentally not the actual

surface polarization but the net polarization in the sample.
Indeed, the experiment measures the surface charge �,
which is equal to the normal component of the displace-
ment field, � � Dz=4� � E0=4�� "P. Therefore, we
need to find an equation for the net polarization "P, which,
from the symmetry arguments alone, should have the form

#A "P�b "P2 � #B "P3 � f "P4 � #C "P5 � E0 �W=l; (8)

since the terms of all powers in "P are allowed in a system
with asymmetric boundaries. Below, we solve the system
(4)–(7) with the boundary conditions (3) and find the
coefficients in the generic equation of state (8). To find
the net polarization "P, we integrate the equation of state (4)
over the film with the use of the boundary conditions (3):
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A "P� B "P3 � C "P5 � �3B "P� 10C "P3��P2�

�B� 10C "P2��P3 � 5C "P�P4 �C�P5 � E0 � R=l;

(9)

R 	 w1 � w2 
 �1P1 
 �2P2; (10)

where �P � P�z� 
 "P, P1�2� � P
��
�l=2� is the surface
polarization that can be expressed via the coefficients c1�2�
introduced in Eq. (12). To find �P, we subtract Eq. (9) from
Eq. (4) and obtain

~A�P�K2�K3�K4�K5
gd
2�P=dz2�
R=l; (11)

where the cumulants K2 � �3B "P� 10C "P3���P2 
 �P2�,
K3 � �B� 10C "P2���P3 
 �P3�, K4 � 5C "P��P4 
 �P4�,
and K5 � C��P5 
 �P5� can be neglected under the con-
ditions used below, ~A � 4�� A� 3B "P2 � 5C "P4 � 4�,
since A � �T 
 Tc�=T0 and for displacive systems T0 �
105 K, so we are in a regime where jAj & Tc=T0 � 1. The
solution of the Eq. (11) is

�P � 
R=� ~Al� � c1 exp

$�z� l=2��

� c2 exp

$�l=2
 z��; (12)

where $ � � ~A=g�1=2 � d
1
at .

The fact of appearance of the atomic length 1=$� dat in
our phenomenological treatment is important and was
actually noticed in Ref. [8]. Physically, it appears because
the spatial changes of polarization lead to bound charges
and strong ‘‘depolarizing’’ fields at the interfaces. Strictly
speaking, the present phenomenological derivation is valid
for models with

���
g

p
> dat. From the data [16] for 90�

domain walls in PbTiO3 we get a typical estimate 1=$ �

�g=4��1=2 � 0:4–0:5 
A. Therefore, the results below are
semiquantitative; the exact values of the coefficients in (8)
are to be found from a microscopic theory.

We can find an approximate solution keeping the leading
terms linear in 1=l:

c1�2� � �w1�2� 
 �1�2�
"P�=��1�2� � $g�; (13)

and obtain from the condition
R
�Pdz � 0
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The averages in Eq. (9) are then easily calculated with the
use of (12): �Pn � �cn1 � cn2�=�n$l� for n � 2–5. Further
simplification is possible if we assume that the character-
istic length

���
g

p
� dat, while �� dat, meaning that we
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FIG. 1 (color online). Theoretical dielectric constants for films
of Ba0:5Sr0:5TiO3 with thicknesses l � 1200 and 775 nm show-
ing complete smearing of the phase transition as a result of the
surface bias field (see text for discussion). Inset: the data from
Ref. [21].
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have a small parameter �=$g� 1. In this case the terms
K2;...;5 contain higher powers of the small parameter �=$g
and can indeed be omitted. Expanding the results in terms
of the small parameter �=$g� 1, we find

#A � A� a=l; (15)

W � w1�1
 �1=$g� � w2�1
 �2=$g�; (16)

a � �1 � �2 � '; (17)

#B � B� )B; (18)

where ' � 3B�w2
1 � w2

2�=�2g
2$3� � 5C�w4

1 �
w4

2�=�4g
4$5� and )B � 5C�w2

1 � w2
2�=�g

2$3l�. The terms
b and f have no effect on a behavior near the phase
transition, since they are proportional to dat=l, and can be
shown to be small. They can be neglected together with the
renormalization of the coefficient C. The dielectric func-
tion is

( � 1�
4�

A� a=l� 3 #B "P2 � 5C "P4
; (19)

with "P determined from Eq. (8) and has a smooth peak in
all systems with nonsymmetric electrodes. In a symmetric
case (W � 0) the second order transition is shifted down
proportionally to 1=l. Indeed, in the Landau theory A �
�T 
 Tc0�=T0, where T0 � Tat � 105 K in displacive ferro-
electrics, Tc0 is the phase transition temperature in the
bulk, and the transition temperature in the film is

Tc 
 Tc0 � 
aT0=l: (20)

This result is similar to the one after Kretschmer and
Binder [8], but what is new here is that the shift depends
on surface dipoles via the new term ' that pushes the
transition temperature down. Indeed, B is negative but
small for weak first order transitions as in perovskites,
while C has the usual atomic value, C� P
4

at . The first
order phase transition is pushed closer to the second order,
because of positive renormalization of the coefficient B!
#B. The shift of temperature of the first order transition in

the symmetric case is defined mainly by the renormaliza-
tion of the coefficient A. Indeed, the condition of the first
order transition #AI � 3 #B2=16C can be presented as

AI � AIbulk 
 a=l� 3B)B=8C; (21)

where AIbulk � 3B2=16C> 0 corresponds to the homoge-
neous first order transition in the bulk and we have ne-
glected the term / l
2. Note that if, according to Eq. (21),
AI becomes negative due to the 
a=l term above the
temperature of the first order phase transition, it cannot
then take place because prior to that transition the system
splits into domains. Indeed, it has been shown in Ref. [14]
that the ferroelectric transition in a film with perfect me-
tallic electrodes and a ‘‘dead layer’’ (e.g., vacuum layer)
proceeds with the domain formation even with dead layers
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down to atomic thicknesses. The imperfect screening by
metallic electrodes will produce similar results. The
strongly polarized surface regions that we consider here
are analogous to those dead layers. The value of A corre-
sponding to the transition with the domain formation de-
pends on the materials parameters and can be roughly
estimated as A�
dat=�l(

1=2�, where ( is the dielectric
constant in the direction perpendicular to the polar axis
[14,17]. For perovskites, which are uniaxial due to a misfit
strain, the value of ( can be large, so that the condition for
the domain formation is A<
dat=�l(1=2� and can be met
in a tiny temperature interval just below the loss of stability
of the paraelectric phase that occurs at the point A � 0.
Therefore, in experiments with symmetric electrodes one
would see a phase transition very near A � 0, which is
close to the transition temperature in the bulk, as observed
in [18].

The present theory may, at least qualitatively, explain the
observed surprisingly strong smearing of the phase tran-
sitions in thin films, both epitaxial and polycrystalline
[19,20]. Indeed, we made the estimate of the dielectric
constants for Ba1
xSrxTiO3 (x � 0:3) for thicknesses l �
1200 and 775 nm, which is in good semiquantitative agree-
ment with the recent data [20] (Fig. 1). The value of the
surface bias field has been in the range 0.07–0.1 cgs, which
corresponds rather accurately to our above order-of-
magnitude estimates. Slower falloff in the data at low
temperatures may be related to the usual presence of
domains in this temperature region. It is worth mentioning
that there have been various hypotheses put forward to
explain the observed very strong smearing of the phase
transition, like a ‘‘dead’’ layer or the relaxor behavior [19].
We point out that both of those explanations are not likely
in the case of epitaxially grown thin films. In particular, the
relaxor model would require a presence of strong nano-
1-3
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meter scale disorder, whereas in, e.g., epitaxial
Pb�Zr;Ti�O3 films on strontium ruthenate, there is practi-
cally an ideal atomic registry with the substrate [21].

The surface polarization discussed above is a special
case of a polarization due to gradients of a scalar quantity
(concentration c of, e.g., oxygen vacancies, density, tem-
perature, etc.), and they are accounted for by a term like

fc � 
+ ~P ~r c; (22)

in the free energy, where the coefficient + is estimated as
+� Patdat [22–24]. This field should be taken into ac-
count in the case of a film with a compositional profile
(grading) given by, e.g., the concentration of one of the
components of a ferroelectric alloy c � c�z�. Generally,
the other coefficients of the thermodynamic potential also
become inhomogeneous. There are FE systems with inten-
tional concentration profile (graded) [25] and unintentional
(e.g., with a defect concentration profile) that are currently
a focus of research. The equation of state of the graded
ferroelectric film with c � c�z� is

A�z�P�BP3�

CP5
g
d2P

dz2

Dr2

?P�E0�4�� "P
P��+
dc
dz
: (23)

If it were possible to neglect the inhomogeneity in other
coefficients of the thermodynamic potential, we have to
simply add an average value of the field +dc=dz� +)c=l
to the bias field � ~w1 � ~w2�=l, where )c is the difference
of concentration through the sample ()cmax � 1).
Accounting for the inhomogeneities of the Landau coef-
ficients makes the problem more difficult because even
small inhomogeneities of the coefficients have been shown
to lead to the domain formation if the bias field is absent
[17]. As above, the main effect of the surface bias fields is
smearing out of the phase transition into a monodomain
state. However, a phase transition with formation of a
domain structure remains a possibility. For a special case
of stepwise concentration we have found elsewhere [26]
that (i) in the case of symmetric boundaries our previous
results [17] are not changed essentially by the presence of
the interface field + and the soft part splits into domains. In
the case (ii) of asymmetric boundaries the domain forma-
tion is possible but only for a much larger compositional
inhomogeneity.

We have described a new mechanism of strong phase
transition smearing in thin films where surface acts as a
defect coupled to the order parameter. Other types of
transitions, e.g., antiferroelectric ones, may be smeared
by a similar effect. In thicker films, other defects like the
grain boundaries would produce the bias field that can be
described in the same terms as Eq. (23) and will smear out
the transition (as seen in ceramic films). Asymmetric point
defects will produce a bias field in the bulk and would
contribute to the smearing [10]. However, in thin films one
10760
should expect that the surface effect is the dominant one in
smearing the phase transition.

We thank J. M. Gregg, A. Kholkin, and J. F. Scott for
stimulating discussions and sharing their data. A. P. L.
acknowledges Spanish MCYT (MAT 2300-02600) for par-
tial support.
1-4
[1] L. D. Landau and E. M. Lifshitz, Statistical Physics
(Butterworth, Oxford, U.K., 1980), Pt. I, Chap. 14.

[2] J. F. Scott, Ferroelectric Memories (Springer, New York,
2000).

[3] M. Alexe and J. F. Scott, Key Eng. Mater. 206–213, 1267
(2002).

[4] V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20,
1064 (1950).

[5] P. G. de Gennes, Superconductivity of Metals and Alloys
(Benjamin, New York, 1966).

[6] M. I. Kaganov and A. N. Omelyanchouk, Zh. Eksp. Teor.
Fiz. 61, 1679 (1971) [Sov. Phys. JETP 34, 895 (1972)].

[7] K. Binder and P. C. Hohenberg, Phys. Rev. B 6, 3461
(1972).

[8] R. Kretschmer and K. Binder, Phys. Rev. B 20, 1065
(1979).

[9] L.-H. Ong, J. Osman, and D. R. Tilley, Phys. Rev. B 63,
144109 (2001).

[10] A. P. Levanyuk and A. S. Sigov, Defects and Structural
Phase Transitions (Gordon and Breach, New York, 1988).

[11] J. Bardeen, Phys. Rev. 49, 653 (1936).
[12] W. Mönch, Semiconductor Surfaces and Interfaces

(Springer, Berlin, 1995).
[13] B. Meyer and D. Vanderbilt, Phys. Rev. B 63, 205426

(2001); R. E. Cohen, Ferroelectrics 194, 323 (1997); Ph.
Ghosez and K. M. Rabe, Appl. Phys. Lett. 76, 2767
(2000); J. B. Neaton and K. M. Rabe, Appl. Phys. Lett.
82, 1586 (2003).

[14] E. V. Chensky and V. V. Tarasenko, Sov. Phys. JETP 56,
618 (1982) [Zh. Eksp. Teor. Fiz. 83, 1089 (1982)].

[15] A. M. Bratkovsky and A. P. Levanyuk, Phys. Rev. Lett. 84,
3177 (2000).

[16] S. Stemmer et al., Philos. Mag. A 71, 713 (1995).
[17] A. M. Bratkovsky and A. P. Levanyuk, Phys. Rev. B 66,

184109 (2002).
[18] M. M. Saad et al., cond-mat/0406197.
[19] Yu. A. Boikov and T. Claeson, J. Appl. Phys. 89, 5053

(2001); Z. Kighelman et al., J. Appl. Phys. 91, 1495
(2002); C. B. Parker et al., Appl. Phys. Lett. 81, 340
(2002).

[20] A. Lookman et al., J. Appl. Phys. 96, 555 (2004).
[21] C. H. Ahn et al., Science 276, 1100 (1997); P. Paruch

et al., Appl. Phys. Lett. 79, 530 (2001).
[22] Sh. M. Kogan, Fiz. Tverd. Tela (Leningrad) 5, 2829 (1963)

[Sov. Phys. Solid State 5, 2069 (1964)].
[23] A. P. Levanyuk and S. A. Minyukov, Fiz. Tverd. Tela

(Leningrad) 22, 1808 (1980).
[24] A. K. Tagantsev, Phase Transit. 35, 119 (1991).
[25] N. W. Schubring et al., Phys. Rev. Lett. 68, 1778 (1992).
[26] A. M. Bratkovsky and A. P. Levanyuk, cond-mat/0402100.


