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Analysis of available experimental data shows that there exists a limited variety of shapes of
temperature dependence of spontaneous magnetization. For most metallic ferromagnets the shape (as
opposed to scale) of the Ms versus T curve can be characterized by a single dimensionless parameter. A
numerical description of the dependence Ms�T� for a particular ferromagnetic material is thus reduced to
evaluating three quantities: the saturation magnetization M0 � Ms�0�, the Curie point TC, and the shape
parameter s. It is demonstrated that classical spin (S � 1) dynamics fails to describe correctly either of
the finite-temperature characteristics, TC or s.
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TABLE I. Characteristics of temperature dependence of spon-
taneous magnetization of ferromagnets: saturation magnetization
M0, Curie temperature TC, parameters entering Eq. (1), p and s.
The TC values are those used to normalize the data presented in
Fig. 1; they do not necessarily coincide with the values given in
the cited references.

Compound M0 (emu=g) TC (K) p s Source

Fe 222 1044 4 0.35 Ref. [11]
Co, hcp 164 1385 5=2 0.11 Refs. [4,12]
Co, fcc 166 1385 5=2 0.11 Ref. [5]
Ni 57.6, 58.6 628, 631 5=2 0.15 Refs. [11,13]
Gd 268 291 5=2 1.3 Ref. [14]
YCo5 124 930 5=2 0.7 Ref. [15]
Y2Fe17 170 312 5=2 0.6 Ref. [16]
GdZn 186 270 5=2 1.9 Ref. [17]
Spontaneous magnetization Ms is the most fundamental
property of a ferromagnet. Not surprisingly a lot of effort
has been spent over the last century on attempts to describe
theoretically Ms as a function of temperature, between zero
Kelvin and the Curie point TC, where Ms vanishes. At
present only the problem of evaluating saturation magne-
tization M0, that is Ms�T � 0�, can be considered solved;
calculations based upon the density functional theory
(DFT) produce values of M0 which are consistently in
good agreement with experiment [1]. There have also
appeared many reports of TC calculations (see, e.g.,
Ref. [2], also Ref. [3], and references therein) employing
a combination of DFT and Langevin’s spin dynamics,
based on the classical Heisenberg model. The classical
(S � 1) approximation is examined at some length later
and found inapplicable, in particular, to TC calculations.

However, the main subject of this Letter is the shape,
rather than the scale, of temperature dependence of sponta-
neous magnetization. To study the shape of Ms�T� in its
pure form, it is convenient to introduce reduced sponta-
neous magnetization, m � Ms=M0, and reduced tempera-
ture, � � T=TC. Consider the following question: How
various are the observed forms of m���? That there is no
universal function m��� valid for all ferromagnets (the so-
called Law of Corresponding States) was established ex-
perimentally over half a century ago [4,5]. If so, how many
extra parameters are needed to fully describe the variety of
existing shapes of m���?

An immediate answer is given by the molecular field
theory: m��� depends on a single dimensionless parameter.
In the localized, Weiss-Brillouin approach, this parameter
is the relevant atomic quantum number, S or J. In the
itinerant version, due to Stoner, it is the ratio of the
exchange to the Fermi energy. (An excellent description
of both cases can be found in Morrish’s textbook [6],
whereas Aharoni’s monograph [7] contains rather accurate
explicit expressions for m��� obtained in the Weiss-
Brillouin approach with 1=2< S< 7=2.) However, one
cannot be fully satisfied with this answer since the mo-
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lecular field theory does not describe the shape of m���
correctly.

There is no general analytical expression for m��� be-
yond the molecular field approximation, except in the
two limiting cases, � ! 0 and � ! 1, although it has
been recently demonstrated [8,9] that an accurate de
scription of m��� in the entire interval 0< �< 1 is pro-
vided by a combination of two (in some cases, three)
simple power laws, one for each of the temperature
subintervals.

To advance the matters further, we propose to present the
function m��� in the following form:

m��� � �1� s�3=2 � �1� s��p	1=3; (1)

where s and p are parameters, p > 3=2, s > 0.
Equation (1) is constructed to obey Bloch’s 3=2 power
law at low temperatures, m 
 1� 1

3 s�
3=2 as � ! 0,

whereas in the critical region, � ! 1, m is proportional
to �1� ��1=3, as prompted by the critical behavior of the
Heisenberg model [10].
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FIG. 1. Reduced spontaneous magnetization versus reduced
temperature for several ferromagnets. The continuous lines
were calculated using Eq. (1) with the p and s of Table I. The
symbols are experimental data points from (a) Refs. [11] (�) and
[13] (�); (b) Ref. [11]; (c) Refs. [5] (�), [12] (�), and [4] (4);
(d) Ref. [14]; (e) Ref. [15]; (f) Ref. [16]; (g) Ref. [17]. The arrow
marks the hcp-fcc transition point in cobalt.
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Available experimental data were fitted to Eq. (1). The
best-fit parameters are listed in Table I and the correspond-
ing curves are shown in Fig. 1.

It turns out that all but one of the considered ferromag-
nets are described by Eq. (1) with p � 5=2. This result is
not quite unexpected; it reminds us of Dyson’s low-
temperature expansion [18] for the quantity m3, truncated
after the third term. The only exception from this rule is
bcc iron, which obeys Eq. (1) with p � 4. Setting aside this
10720
exception, one can say that the entire variety of observed
m��� dependences can be characterized by a single pa-
rameter—the shape parameter s.

At this stage Eq. (1) should be regarded as an empirical
expression; we are unable to strictly explain it or the fact
that p � 5=2 in most cases.

We stress, however, that Eq. (1) pretends to describe the
experimental m��� dependence as a whole, not just the
asymptotics at � ! 0 or � ! 1. Small details of this de-
pendence are often sample specific and sometimes can be
traced back to impurities. A didactic example is Ni
[Fig. 1(a)]. The more recent and more detailed data of
Crangle and Goodman [11] (open circles) deviate from
Eq. (1) (continuous line) around � � 0:7. However, the
earlier data of Weiss and Forrer [13] (filled circles) show
no such anomaly and comply with Eq. (1) everywhere. We
therefore deliberately avoid considering any experimental
data other than those obtained on stoichiometrically pure
single crystals. It is interesting that the genuine anomaly
associated with the hcp-fcc transition in cobalt is not
visible on the scale of Fig. 1(c). Note that two slightly
different values of M0 were used to normalize the data
above and below the transition point (indicated with an
arrow) as could be reasonably expected from two structur-
ally distinct phases.

Thus, the problem of describing temperature depen-
dence of spontaneous magnetization is reduced to evaluat-
ing three quantities: two scale factors, M0 and TC, and one
shape parameter s. Making use of the classical spin-wave
theory [19], the latter can be expressed as follows:

s �
3

8
��3=2�

�
3

2

�
�B

M0

�
kTC

D

�
3=2

� 0:176
�B

M0

�
kTC

D

�
3=2

;

(2)

where ��x� stands for Riemann’s � function, ��32� 
 2:612
[20], and D is spin-wave stiffness (the coefficient in the
parabolic magnon dispersion relation, �h! � Dq2, valid in
the limit q ! 0). Both M0 and D are ground state proper-
ties, and as such they should be described well by the DFT.
This is particularly true about M0 [1], the situation for D
being somewhat less satisfactory [2,3]. The discrepancies
in the latter case could be accounted for, partially at least,
by the errors made when deducing D from both experi-
mental and calculated dispersion curves. The fact that
agreement with experiment is very good at larger q [21]
leaves room for optimism.

As regards Eq. (2) itself, it seems to relate s and D
correctly, insofar as the available data allow us to judge;
see Table II. Here, once again, iron is a notable exception,
its scalc being less than one-half of the corresponding
‘‘experimental’’ value from Table I.

Unlike M0 and D, Curie temperature is not a ground
state property, so no quantitative description of TC can be
reasonably expected from DFT alone. As a first application
of the obtained formula (1), let us demonstrate that DFT
4-2
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combined with classical spin dynamics, at present the most
commonly used technique of evaluating TC [2,3], is grossly
inadequate as an approach to describing Ms�T� near TC
[26]. To this end, setting p � 5=2 in Eq. (1), we write for
the cube of the reduced magnetization the following
asymptotic expression, which applies when T ! TC � 0:

m3 �

�
5

2
� s

��
1�

T
TC

�
: (3)

Since the prefactor in Eq. (3) must remain positive, the
parameter s has an upper bound of 5=2. It has already been
stated that s must be positive, so that Bloch’s 3=2 power
law is complied with as � ! 0. Therefore,

0< s< 5=2: (4)

It now follows that the prefactor in Eq. (3) cannot be
greater than 5=2. Since there is no a priori physical reason
limiting the slope of m3��� near the Curie point, it is clear
that there may exist exceptional cases not described by
Eqs. (3) and (4), in which it was assumed that p � 5=2. A
higher value of p must be adopted then. Bcc iron apears to
be such a case.

Now, if the classical spin dynamics was valid in the
vicinity of the Curie point, it should not just yield the
horizontal intercept of the linear m3 versus T dependence
(3), i.e., the TC. It must also reproduce correctly the slope
of the line and hence the value of the shape parameter s. By
virtue of Eq. (1) this would uniquely determine spontane-
ous magnetization as a function of temperature.

Figure 2 presents as m3 versus � the data points and fit of
Fig. 1(a) for Ni. The points with error bars are the results of
a Monte Carlo simulation [2] which employed the classical
Heisenberg model. These points lie approximately on a
straight line, as could be expected from the in principle
exact treatment of the Heisenberg model. However, the
TABLE II. Quantities used in conjunction with Eq. (2): spin-
wave stiffness D and saturation magnetization M0. The latter
data were taken from Table I and converted into the units of
volume magnetization, so as to obtain dimensionless shape
parameters. These are given in the last column and should be
compared with the values of s in Table I, obtained by fitting
experimental data. The TC values used in the calculations were
those given in Table I.

Metal D (meV �A2 M0 (kG) scalc

Ni 400a 0.51 0.16
Fe 307b 1.75 0.15
Co, hcp 510c 1.45 0.13
Gd �20d 2.12 1.1

aReference [22].
bReference [23].
cq k �001	, Ref. [24].
dEstimated from Fig. 1 of Ref. [25], q k �001	.
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slope of this line—the dotted line in Fig. 2—equals �1:2.
According to Eq. (3) this corresponds to s � 1:3—a far
cry from s � 0:15 obtained by fitting the experimental
data. Taking into consideration that s must be contained
within the finite interval (4), one is forced to the following
conclusion: the shape of m��� could not have been mis-
represented more.

This should hardly come as a surprise; one may recollect
that in the simple molecular field theory [6] the two ex-
treme m��� curves are exactly those corresponding to S �
1 (classical) and S � 1=2 (more relevant to Ni), their
shapes being conspicuously distinct. As regards TC, its
dependence on S for the Heisenberg model with nearest-
neighbor exchange is known quite accurately from the
high-temperature series. The relevant dimensionless quan-
tity is kTC=JS

2 � 55
96 �Z� 1��1 1=S� 1=11S2�, Z being

the lattice coordination number [27]. Here the difference
between the S � 1=2 and the classical (S � 1) cases is
more than a factor of 2.6. There is little reason to expect
that beyond the nearest-neighbor approximation this dif-
ference should become negligible. The only (if any) justi-
fication for using the classical approximation in finite-
temperature calculations is that it allows one to avoid the
awkward question of what should be taken for the atomic
spin S in itinerant ferromagnets. Of course, this conve-
nience does not make the approximation itself quantita-
tively any better [28].

Talking about further possible uses of Eq. (1), one
should mention a model description of 3d-4f intermetallic
systems. An important component here is magnetization of
the 3d sublattice, hard to determine experimentally. Note
that the two representatives of this class of compounds in
Table I, YCo5 and Y2Fe17, have close shape parameters,
s � 0:7 and 0.6, respectively. Such values of s may be
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FIG. 2. Data points and fit of Fig. 1(a), presented as m3 versus
�. Shown as points with error bars are the Monte Carlo results of
Ref. [2]. The dotted line corresponds to m3 � 1:2� �1� ��.
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characteristic of iron- and cobalt-rich intermetallics in
general [29]. The format of this Letter precludes us from
proceeding any further in this direction.

To summarize, in an attempt to quantify the shape of
temperature dependence of spontaneous magnetization, we
have proposed for it a simple analytical representation,
Eq. (1). All metallic ferromagnets for which appropriate
experimental data are available obey this formula with the
same exponent p � 5=2. The only exception is bcc iron,
which also follows Eq. (1), but with p � 4, s � 0:35. With
the aid of Eq. (1) it has been demonstrated that classical
spin dynamics is inadequate as an approach to describing
finite-temperature properties of ferromagnets. It would
appear interesting to test the validity of Eq. (1) for a
broader variety of ferromagnets, for which proper experi-
mental data are presently not available.
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