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Effect of Vortex-Antivortex Fluctuations on the Heat Capacity of a Type-II Superconducting Film
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The small size vortex-antivortex pairs proliferation in a type-II superconducting film is considered
below Tc. The corresponding contribution to the free energy is calculated. It is shown that these
fluctuations give the main temperature dependent contribution to the heat capacity of the superconducting
film in the sufficiently large interval of temperatures below the transition point.
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The special role of fluctuations in the 2D superconductor
is well-known [1]. For example, the phase fluctuations of
the order parameter invalidate the mean field picture of the
phase transition destroying the long range order [2]. On the
contrary, the fluctuations of the vortex-antivortex-type re-
store the phenomenon of superconductivity: slightly below
the mean field transition temperature Tc0, vortex-antivortex
pairing becomes energetically favorable and the
Berezinskii-Kosterlitz-Thouless (BKT) transition to the
state characterized by finite stiffness (nonzero elastic
modulus) takes place. The corresponding transition tem-
perature, TBKT, almost coincides with the temperature of
the superconducting transition for the film of thickness d,
calculated considering the order parameter fluctuations [3]:

Tc � Tc0�1� 2Gi�2D� lnGi
�1
�2D��;

where

Gi�2D� �
21��3�

�2

1

p2
Fdltr

� 1 (1)

is the Ginzburg-Levanyuk number [1]. Here ��x� is the
Riemann zeta function, pF is the electron Fermi momen-
tum, and ltr is the electron transport mean free path.

It is important to remind the reader that the BKT tran-
sition is determined by the formation of large vortex-
antivortex pairs. These large pairs also determine thermo-
dynamic and transport properties of 2D superconductors in
the critical region of the BKT transition. The temperature
behavior of the physical characteristics of a superconduc-
tor in the vicinity of the transition, but beyond the critical
region, is usually supposed to be governed by the long
wavelength fluctuations of the order parameter [1]. In this
Letter, at the example of a heat capacity, we demonstrate
that, contrary to current opinion, there is a sufficiently large
interval of temperatures below TBKT where the essential
role in thermodynamics of the 2D superconductor belongs
to some specific short wavelength fluctuations (small
vortex-antivortex pairs).

For simplicity we consider the case of a dirty super-
conducting film of thickness d� 
�T�. The coherence
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length 
�T� in the vicinity of transition has the form


2�T� �
�D
16Tc�

:

Here � � 1� T=Tc is the reduced temperature and D �
vFltr=3 is the diffusion coefficient [it must be stressed that
this definition differs by a factor of 2 from the standard
Ginzburg-Landau (GL) expression]. The standard descrip-
tion of the BKT transition is based on the logarithmic
expression for free energy corresponding to large [R�

�T�] vortex-antivortex pairs [2]

FBKT �

�
�ns2�T�

2m
� 2T

�
ln

R

�T�

; (2)

with ns2�T� being the superfluid density. The cornerstone
of the presented theory is the fact that the energy of the
vortex-antivortex pairs tends to zero when the distance
between their centers is less than 
�T� [4,5]. As a conse-
quence, such ‘‘cheap’’ pairs become ‘‘affordable’’ for ther-
mal fluctuations along with the long wavelength
fluctuations of the order parameter. Moreover, their prolif-
eration gives the main contribution to the heat capacity due
to fluctuations in the interval of temperatures

Gi�2D� � � & Gi�2D�ln2�pF
�T�� (3)

below the transition.
As the temperature decreases the characteristic size of

the small vortex-antivortex pairs also decreases. At the
upper limit of the interval (3) this size reaches the inter-
atomic distance and has to be cut off. At this point the
crossover in the temperature dependence of the heat ca-
pacity takes place: at temperatures below it both the small
vortex-antivortex pairs and the long wavelength fluctua-
tions contribute to the heat capacity with the same
intensity.

In order to take into account the specifics of the men-
tioned fluctuation processes let us start from the general
expression for the partition function in the vicinity of Tc,
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Z �
Z

D��r�
Z

D�	�r� exp
�
�
F���r�;�	�r��

T

�
;

with F���r�;��r�	� being the Ginzburg-Landau func-
tional. In contrast to the usual GL-type long wavelength
approximation, the calculation of the functional integral
now has to take into account the vast variety of the order
parameter functions �p�r�, which correspond to specific
realizations of vortex-antivortex pairs in the film. In other
words, in addition to the usual GL order parameter fluctu-
ations we take into account some specific short wavelength
fluctuations.

First, let us separate the partition function Z0 of the
superconducting film without fluctuations:

Z � Z0Z�fl�:

We calculate the partition function Z�fl� in the gas approxi-
mation. Namely, we assume that the main contribution
comes from small pairs and neglect their overlap. Hence

Z�fl� � ZS=��

2�T��

p ; (4)

where S is the area of the film and

Zp �
Z
d���r�

Z
d�	

��r� exp
�
�
Fp����r�;�	

��r��
T

�
(5)

is the contribution of isolated single pairs of all possible
sizes � 
 
�T�, with 0 � � & 1, to the partition function.
The power S=��
2�T�� in Eq. (5) takes into account the
combinatorial factor corresponding to the independent
formation of such pairs. The choice of its form is dictated
by the fact that, as we demonstrate later [see Eqs. (10) and
(11)], even a small pair disturbs the order parameter on the
scale 
�T�, so the maximum sheet density of noninteract-
ing pairs is indeed of order 
�2. Let us stress that this factor
is written with the accuracy up to an independent of
temperature coefficient of the order of 1.

The order parameter ���r� must have two zeros of the
opposite vorticity at the distance 2�
�T� (i.e., the total
vorticity calculated along a contour enveloping the two
zeros must vanish).

As the next step we neglect the axial asymmetry of the
vortex-antivortex pair. Later we see that the main contri-
bution to the partition function comes from pairs with
characteristic size reff � 
�T�. This justifies our gas ap-
proximation (� � 1). The free energy functional corre-
sponding to Eq. (5) is

Fp � �d
Z
d2r

��
��j���r�j2 


�D
8Tc

j@����r�j2



7��3�

16�2T2
c
j���r�j4

�


�
2
j�0�T�j

2

�
: (6)

Here � � mpF=2�2 is the density of states, @� � @=@r�
2ieA, and �2

0�T� � 8�2T2
c�=�7��3��. The last term in

Eq. (6) is related to the fact that Fp is the difference in
10700
the free energy of the state with one vortex-antivortex pair
[the order parameter is ���r�] and the ground state with the
homogeneous order parameter �0�T�.

In the GL approach the contribution of all possible
vortex-antivortex pairs to the partition function (5) is taken
into account by minimization of the functional (6) over the
class of functions ���r� with two zeros of opposite vor-
ticity located at distance 2�
�T�. In order to get rid of this
constraint one should represent the order parameter as

���r� � j���r�jei��r� (7)

and choose the phase in the form

��r� � ’1�r� � ’2�r� 
 ~��r�: (8)

Here the phases ’1�r�; ’2�r� are the rotation angles with
respect to the zeros. Hence they are multivalued functions
of the coordinate, whereas ~��r� is a single value function.
After this parametrization the variation over the functions
���r� and ~��r� can be performed in the standard way [6].
After some cumbersome calculations one can find that the
proposed minimization procedure gives the same result for
the free energy as one would get using in (6) the solution of
the 2D Ginzburg-Landau equation with zero boundary
condition, ���r� � 0, at the circle jrj � �
�T�. It is worth
mentioning that the same procedure is valid also for large
vortex-antivortex pairs, and it gives not only the famous
logarithmic dependence of energy on distance (2) but also
the next order corrections.

In accordance with the above statement we write the
order parameter in the form

��� � � �0�T�f� �

and obtain the dimensionless GL equation

1

 
@
@ 

�
 
@
@ 

�
f


1

2
f�

1

2
f3 � 0: (9)

Here  � r=
�T� is the dimensionless radius.
Let us investigate the solutions of Eq. (9) in two limiting

cases: small  � � � 1 and large  ! 1. In the region of
small  � � � 1 the function f� � ! 0. This function can
be found as the solution of the linearized Eq. (9):

f� � � C1J0� =
���
2

p
� 
 C2N0� =

���
2

p
�; (10)

where J0 and N0 are the Bessel and Neumann functions,
respectively.

When  * 1, the solution of Eq. (9) takes the form
f� � � 1� f1� �. Substituting this into Eq. (9) one finds

f� � � 1� f1� � � 1� C3K0� �; (11)

where K0 is the modified Bessel function. The constant
term corresponds to the usual contribution of long wave-
length order parameter fluctuations that appear in the result
of our analysis together with the contribution of small
vortex-antivortex pairs.
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One can see that the asymptotic expression (11), despite
being calculated at  * 1, extends to the region of small  .
Therefore we can match solutions (10) and (11) at  �
� � 1. In order to do this let us use an approximate
expression for the Bessel functions J0, N0, and K0 calcu-
lated for small arguments [7]. The comparison of constants
and coefficients in logarithmic terms gives two equations
for coefficients C1;2;3. The third equation is determined by
the boundary condition f��� � 0 which corresponds to our
disk model of the vortex-antivortex pair. Finally

Ci � �i1 

1

2 ln 2
%�

8><>:
ln2
�
2

:

Here % � exp�C�, where C � 0:577 215 
 
 
 is the Euler
constant.

Now we can find the energy of disk (vortex-antivortex
pair) Fp��; T� as the function of its dimensionless radius �.
In order to do this one can use the general expression (6)
and the fact that � � �0�T�f satisfies the nonlinear equa-
tion (9). As a result

Fp��; T� �
b�T�

ln 2
%�

Z 1

0
xK0�x�dx �

b�T�

ln 2
%�

; (12)

with

b�T� �
�2�dD�2

0�T�
4Tc

: (13)

Let us stress that the presence of the large logarithm in the
denominator makes these localized vortex-antivortex-type
fluctuations of the order parameter more energetically
favorable than the almost homogeneous (long wavelength)
Ginzburg-Landau ones.

Now let us perform the functional integration in Eq. (5).
Vortex-antivortex pairs proliferate below Tc in a fluctuation
way. In our model this is equivalent to taking into account
disks of different radii. Cutting off their sizes at interatomic
distances ( � p�1

F ) one can rewrite Eq. (5) in the form

Zp �
1

�pF
�T��
2 
 2

Z 1

1=�pF
�T��
�d� exp

�
�
Fp��; T�

T

�
:

(14)

One can see that in the considered range of temperatures
(3) the integration in Eq. (14) may be carried out by the
steepest descent method. That gives

Zp �
4 
 21=4�1=2

%2

�
b�T�
T

�
1=4

exp
�
�2

������������
2b�T�
T

s �
:

Finally, the corresponding contribution to the free energy is
10700
~F p�T� � �T lnZS=�

2

p

� �
TS

�
2�T�

�
�2

������������
2b�T�
T

s



1

4
ln
b�T�
T

�
: (15)

:

This expression is valid provided that b�T� � T, which
justifies the use of the steepest descent method. Looking at
Eq. (13) and recalling the definition of the 2D Ginzburg-
Levanyuk number (1) one can see that the requirement
b�T� � T is equivalent to � � Gi�2D�; i.e., our considera-
tion is valid for the temperature interval defined by (3).
This range still belongs to the GL region (Gi�2D� � �� 1)
and the main temperature dependence of Eq. (15) origi-
nates from functions 
�T� and �0�T�. The corresponding
vortex-antivortex pair contribution to the heat capacity is

Cp�T ! Tc�

� �
48STc
vFltr

�
@2

@�2

��
4

������������
�dD
7��3�

s
�3=2 �

�

4�2

� ln
2�4�dD�

7��3�

�
: (16)

One can see that the differentiation of the second term in
the square brackets of Eq. (16) reproduces the well-known
contribution of the GL long wavelength order parameter
fluctuations to the heat capacity [1]:

C�2�
�fl���� �

8�2Sd
7��3�

�Tc

�Gi�2D�
�

�
: (17)

Nevertheless, the main fluctuation contribution to the heat
capacity of 2D superconducting films [d� 
�T�] results
from the first term of Eq. (16). It corresponds to the short
wavelength vortex-antivortex-type order parameter fluctu-
ations:

Cp��� � �
48�2Sd
7��3�

�Tc

�
2Gi�2D�
�

�
1=2
: (18)

The contribution (18) dominates over (17) in the entire
region (3).

At temperatures below �cr �Gi�2D�ln2pF
�Tcr� the sec-
ond term of Eq. (14) is exponentially small and the vortex-
antivortex contribution to the partition function is reduced
to the first term:

Zp �
1

�pF
�T��
2 : (19)

The corresponding contribution to the free energy,

~F p�T� �
TS

�
2�T�
ln�pF
�T��2; (20)

results in the positive vortex-antivortex pair correction to
heat capacity similarly to the usual long wavelength fluc-
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tuations of the order parameter Eq. (17). Let us stress that
the correction Cp��� around the crossover point changes its
sign, as it is expected to match at this temperature the
positive C�2�

�fl����. Let us note that the negative sign of the
vortex-antivortex fluctuation correction in the immediate
vicinity of the transition temperature means that the mean
field heat capacity jump overestimates the true value and
the vortex-antivortex pairs contribution smears it out.

In conclusion, let us summarize the results. We have
demonstrated that the proliferation of small vortex-
antivortex pairs in 2D superconducting films results in
the appearance of the specific contribution to its heat
capacity. This contribution dominates over the usual
GL fluctuation correction in the wide enough interval of
temperatures below Tc. One can expect that this type of
fluctuation contributes not only to the thermodynamic
but also to the transport properties of superconducting
films.
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