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Microrheology from Rotational Diffusion of Colloidal Particles
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The microrheology of viscoelastic fluids is obtained from rotational diffusion of optically anisotropic
spherical colloidal probes, measured by depolarized dynamic light scattering. The storage and loss moduli
obtained from the rotational mean squared displacement is in excellent agreement with those obtained
from translational diffusion and by mechanical measurements. We also show that this method is
applicable to samples with strong light scattering components. This extends the capabilities of the
microrheological methods based on the diffusional motion of colloidal probes.
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The diffusive motion of colloidal particles embedded in
a complex fluid probes the local mechanical response of
the host medium to oscillatory perturbations at frequencies
and space scales not attainable by conventional mechanical
instruments. This method to determine the mechanical
properties, referred to as microrheology [1,2], is currently
used to measure the rheology of different soft materials
including gels, polymer solutions, and fluids of biological
interest such as solutions of filamentous actin and the
cytoplasm of living cells [3–7]. The main advantages of
microrheology is the possibility to measure the mechanical
properties of very small systems (e.g., in living cells with a
volume of only a few picoliter) and the accessibility to
much higher shear frequencies than those attained me-
chanically. The basic idea behind this method is the use
of a generalization of the Stokes-Einstein relation between
the translational motion of the probe particles, described by
the mean squared displacement W�t� � h�r2�t�i=6, with
�r2�t� being the particle’s displacement at time t, and the
mechanical properties of the medium described by the
stress relaxation modulus G�t� [8]. For noninteracting
spherical particles in a simple viscous fluid, the mean
squared displacement is a linear function of time, i.e.,
W�t� � Dt. Here D is the free-particle self-diffusion coef-
ficient, related to the shear viscosity � of the fluid by the
Stokes-Einstein relation, i.e., � � kBT=6
aD, with kBT
being the thermal energy and a the particle’s radius. In the
absence of interactions with neighbor particles and exter-
nal fields, deviations of W�t� from linearity would reflect a
more complex (viscoelastic) local mechanical response of
the host medium. This is expressed in the generalized
Stokes-Einstein relation, which in the Fourier space reads
[1]

G��!� �
kBT

i!
ah�r2�!�i
; (1)

where h�r2�!�i is the Fourier transform of the mean
squared displacement, ! is the frequency of shearing,
and G��!� is the complex shear modulus whose real part
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G0�!� is the elastic or storage modulus and imaginary part
G00�!� is the viscous or loss modulus. These quantities can
be obtained from Eq. (1), using the method devised by
Dasgupta et al. [9]. In that method, one assumes a local
power law for the mean squared displacement, leading to
the evaluation of its first and second logarithmic deriva-
tives. The mean squared displacement, the key quantity
involved here, can be measured by techniques such as light
scattering (single and multiple), and single particle track-
ing techniques (optical and confocal microscopies). Light
scattering techniques have the advantage of measuring
directly the ensemble average of the particle’s motion,
but they require a transparent host. On the other hand,
particle tracking techniques are suitable for the study of
opaque fluids when fluorescent particles are used as probes
[4,7], but they require large probe particles (�1 �m)
which reduces the sampling frequency range, and they
also need repeated measurements to achieve an adequate
ensemble average. Thus, some of these techniques are
better suited to be used in samples of some kinds but not
in others. Therefore, one needs to develop new techniques,
or to make a qualitative improvement of those available, in
order to measure W�t� and to extend the use of microrhe-
ology to a greater variety of soft materials.

Besides the translational diffusive motion, colloidal par-
ticle also rotate due to fluctuating forces exerted on the
particle by the medium. In simple viscous fluids both
diffusive motions probe the same mechanical property of
the medium, namely, its shear viscosity. One may ask the
question whether this result has a more general validity. In
this Letter we demonstrate, experimentally, that in visco-
elastic fluids both diffusive modes probe exactly the same
mechanical properties of the host. For this purpose, we
introduce the use of spherical probe particles with internal
optical anisotropy to determine the microrheology of vis-
coelastic materials from both rotational and translational
diffusion. As we show here, this extends significantly the
use of dynamic light scattering, and of the microrheolog-
ical methods, in two interesting ways: (i) we show that the
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microrheology can also be extracted from the rotational
motion of the probes which, in this case, is measured
simultaneously with the translational motion. The use of
rotational diffusion can be a very useful tool in cases where
the translational motion of the probes is partially quenched
as it happens in confined geometries, and (ii) this method is
also very useful in applications where the host system also
has a considerable light scattering power. The rotational
diffusion also probes the material’s response in a frequency
domain similar to that of the translational diffusion and can
be used to characterize that response. The rotational mo-
tion is analogous to the translational motion, and can be
described for small one-dimensional angular displacement
���t� by the mean squared angular displacement ��t� 	
h
���t��2i=2. For freely rotating spherical particles ��t� �
�t, where � � kBT=8
�a

3 is the rotational diffusion
coefficient [10]. Here too, in the absence of interparticle
interactions, deviations of ��t� from linearity would be
due to the complex response of the medium. The general-
ized Stokes-Einstein relation for rotational diffusion of
spherical particles, expressed in the Fourier space, is given
by [11]

G��!� �
kBT

i!4
a3h��2�!�i
: (2)

In this case too, the microrheological moduli are obtained
by applying the method used in dealing with Eq. (1).

The systems studied here consisted of polyacrylamide
solutions in which spherical colloidal probe particles with
optical anisotropy are dispersed. Depolarized dynamic
light scattering is used to measure both the translational
and the rotational mean squared displacements of the probe
particles. The microrheological properties are obtained, as
describe above, and compared with mechanical measure-
ments. Optically anisotropic spherical particles for this
work were made by emulsification of a liquid crystal
(RM257, Merck) in the nematic phase. The internal struc-
ture of the droplets, with hydrodynamic diameter of
340 nm and size polydispersity of 7.25%, is frozen by
irradiation with UV light [12,13]. The host matrices were
prepared by dissolving polyacrylamide (Sigma), molecular
weight MW � 5–6� 106 g=mol, in deionized water of
17:0 M�cm of resistivity. Particles are dispersed in the
polymeric matrix to achieve a final particle volume fraction
of around 10
5 to avoid interparticle interactions and to
make sure that only single scattering from the probes
occurs. The experiments were carried out at a constant
temperature of 23 �C. Mechanical measurements of the
viscoelastic moduli were carried out using the concentric
cylinders geometry in a Paar-physica MCR300 rheometer.
The mesh size � of the polymeric network is estimated as
� � RG�c

�=c�3=4 [14], where RG is the radius of gyration, c
and c� are the polymer concentration and its critical value,
respectively. The latter was determined as the intercept of
the linear and the power law behavior of the low shear
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viscosity vs c. We found � to be in the range of 1–9 nm for
matrices with polymer concentration in the range of 0.8%
to 0.1% w/w studied here. Thus, the mesh size is much
smaller than the particle’s size.

The sample is placed in a goniometer (Brookhaven) in
the center of a optical vat filled with index matching fluid
(decalin). A polarized laser beam of wavelength � �
488 nm is focused onto the sample cell. The light scattered
at an angle �s with respect to the incident beam is collected
by a monomode optical fiber located in the scattering
plane. A second polarizer (the analyzer) is located before
the optical fiber to make sure that only one mode reaches
the detector. The scattered light is split and directed to two
photon detectors (ALV/SO-SIPD), and the signal is pro-
cessed by a time correlator (ALV 6010/160) operated in
the pseudocross correlation mode. The optically aniso-
tropic particles have a nematiclike internal structure,
whose director n̂�t� changes direction randomly due to
fluctuating torques exerted by the solvent molecules.
Thus, the time correlation function g�2��k; t� 	
hI�k; 0�I�k; t�i=hI2�k; 0�i of the light scattered I�k; t� by
the particles can be measured in two different geometries
of the polarizers: both vertical (VV) and one vertical and
the other (the analyzer) horizontal (VH). Here k �
�4
ns=�� sin��s=2� is the magnitude of the scattering
wave vector and ns is the refraction index of the medium.
In each polarizer’s geometry, the corresponding correlation
function g�1��k; t� of the scattered electric field ~E�k; t�, is
obtained via the Siegert relation, i.e., g�2��k; t� � 1� b j

g�1��k; t� j2 , where b is an experimental constant of order
one [15]. Thus, the measured quantities of interest
are: g�1�VV�k; t� � hE�

VV�k; 0�EVV�k; t�i=hjEVV�k; 0�j
2i and

g�1�VH�k; t� � hE�
VH�k; 0�EVH�k; t�i=hjEVH�k; 0�j

2i. These
correlation functions describe the particle’s dynamics and
can be written as [15]

g�1�VV�k; t� � 
A� BfR�t��f�k; t� (3)

and

g�1�VH�k; t� � fR�t�f�k; t�; (4)

where fR�t� and f�k; t� are the dynamic correlation func-
tions describing single particle rotational and translational
motion in the host matrix, respectively. A and B are con-
stants depending only on the components of the particle’s
polarizability tensor, which are intrinsic particle proper-
ties, and can be measured in a known host fluid. In this
work, those constants are determined by light scattering
from particles dispersed in water [13]. Although the rota-
tional and translational dynamics are mixed up in the field
correlation functions, one can see from Eqs. (3) and (4) that
the dynamic correlation functions can be obtained either by
measuring both g�1�VV�k; t� and g�1�VH�k; t� at the same scatter-
ing angle, or by measuring g�1�VH�k; t� at two different scat-
tering angles. As we show below, both possibilities can be
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realized and lead to the same results at low polymer con-
centrations when the light scattered by the polymer matrix
is not more than a few percent of the light scattered by the
probe particles. For more concentrated polymeric matrices,
with higher scattering power, the second option provides a
method to block the light scattered from the polymeric
matrix from reaching the detector. The mean squared dis-
placements, rotational and translational, can be obtained
from the dynamic correlation functions by using the
Gaussian approximation, i.e., by assuming f�k; t� �
exp�
 k2W�t�� and fR�t� � exp�
 6��t��.

Figure 1 shows representative light intensity correlation
functions measured in a system with a polyacrylamide
concentration of 0.5% w/w (symbols). In this figure one
can appreciate some characteristic features of those corre-
lation functions. For instance, the correlation measured in
the VH geometry decays faster than that measured in the
VV geometry, measured both at the same scattering angle
(�s � 20 �). On the other hand, the VH correlation decays
faster for larger scattering angles. One of the VH correla-
tion functions for particles in water is also shown for
comparison (solid line). As one can see here, the presence
of the polymer slows down the diffusive motion of the
particles by more than 1 order of magnitude. Nevertheless,
the motion of the particles is not quenched and the corre-
lation function g�2��k; t� reaches its asymptotic value of 1.
Then, applying the Siegert relation, together with Eqs. (3)
and (4), and the Gaussian approximation, one can get both
mean squared displacements from depolarized dynamic
light scattering experiments. Figure 2 shows the transla-
tional and rotational mean squared displacements corre-
sponding to the system in Fig. 1, measured using both
procedures mentioned above. Open symbols represent the
mean squared displacements extracted from measurements
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FIG. 1. Time correlation function of the light scattered from
optically anisotropic spherical particles dispersed in water (line)
and in an aqueous solutions of polyacrylamide at a concentration
of 0.5% w/w (symbols). Error bars are within symbol size as
shown here.
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in the VH optical configuration at two different scattering
angles, whereas the closed symbols correspond to mea-
surements in the VV and in the VH configurations at the
same scattering angle. As one can see here, both proce-
dures lead to identical results for most of the time window
accessible to the experiment. Furthermore, curves for the
rotational motion are pretty similar to those corresponding
to the translational motion. In fact, if we normalize
h�r2�t�i with 4a2, the curve superimposes on the curve
of h��2�t�i. This indicates already that the microrheology
obtained from rotational diffusion will coincide with that
from translational motion; see Eqs. (1) and (2).

The excellent agreement between measurements from
both optical setups has limitations. For low polymer con-
centrations, lower than 0.5% w/w, the match between the
results from both procedures is excellent. However, for
higher polymer concentrations the agreement deteriorates
and can lead to very different results. This is due to the fact
that the light scattered from the polymer increases as its
concentration increases, affecting the measurements done
in the VV configuration. For instance, at c � 0:8% w=w,
the light scattered by the matrix is already 18% of the total
light reaching the detector. Thus, in such a case the (ap-
parent) mean squared displacement obtained by light scat-
tering contains an spurious contribution from the matrix.
On the other hand, in the VH configuration, the light
scattered by the matrix is filtered out by the analyzer and
the light reaching the detector is only that scattered by the
probes. Thus, the use of depolarized light scattering in the
VH geometry and optically anisotropic particles, provide a
way to measure the actual mean squared displacements
and, therefore, to extend the microrheology method to
study the local mechanical properties of fluids with a
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FIG. 2. Translational and rotational mean squared displace-
ments of optically anisotropic particles, measured in the
VV-VH geometry (closed symbols) and in the VH-VH geometry
at two different angles (open symbols). As shown here, the slope
of both mean squared displacements is lower than one (the slope
of the solid line is 1). Thus, the motion of the particles in the
polymeric matrix is subdiffusive.
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FIG. 3. Comparison of the storage G0 and loss G00 moduli of
the sample in Fig. 1, measured by translational (a) and rotational
(b) probe diffusion microrheology and mechanical rheology.
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considerable scattering power. We checked this by intro-
ducing polystyrene spheres of diameter 1 �m as scattering
inclusions in the sample with 0.5% w/w of polymer. The
latex particles at a volume fraction of 10
4 scatter light
about 4 times that from the optically anisotropic particles
when measured in the VV configuration. The mean squared
displacements of the anisotropic particles measured with-
out the scattering inclusions (Fig. 2) are recovered when
measurements in the sample with inclusions are carried out
in the VH geometry at two different angles. On the other
hand, measurements in the VV and VH at the same angle
lead to a complete different results for both mean squared
displacements.

Finally, in Fig. 3 we show the storage (open squares) and
loss (open circles) moduli for the system in Fig. 1. Closed
symbols correspond to mechanical measurements.
Figure 3(a) shows microrheology results from translational
diffusion, whereas Fig. 3(b) shows those from rotational
diffusion. As one can see here, there is an excellent agree-
ment between microrheology from both diffusional mo-
tions and mechanical measurements. This nice agreement
is observed in the range of polymer concentration studied
here, 0.1 to 0.8% w/w. For higher concentrations, the
particle’s dynamics becomes too slow and the intensity
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correlation functions do not reach their asymptotic values
of one within the time scale of the experiment.
Investigations in that concentration regime may require
the introduction of a nonergodic treatment to the light
scattering data [13].

This Letter presents a methodology to study simulta-
neously the translational and rotational motion of spherical
colloidal probes in viscoelastic fluids. As shown here, both
diffusion modes are sensible to the mechanical properties
of the host medium and both probe the same properties
when the host is a simple viscoelastic fluid. This opens the
possibility to study a number of different media where
rotational motion can be applied as a novel and useful
tool to overcome problems in measuring the translational
diffusion. It is also shown here that this method provides a
simple way to study the microrheology of soft materials
with strong scattering components by light scattering
techniques.
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