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Experimental Investigation of Local Properties and Statistics of Optical Vortices
in Random Wave Fields
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We present the first direct experimental evidence of the local properties of optical vortices in a random
laser speckle field. We have observed the Berry anisotropy ellipse describing the anisotropic squeezing of
phase lines close to vortex cores and quantitatively verified the Dennis angular momentum rule for its
phase. Some statistics associated with vortices, such as density, anisotropy ellipse eccentricity, and its
relation to zero crossings of real and imaginary parts of the random field, are also investigated by
experiments.
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FIG. 1. Experimental setup for generation and detection of
phase singularities in isotropic random waves. BS: beam split-
ters; MO: microscope objectives; M: mirrors; GG: ground glass
plate.
Vortices or phase singularities in optical fields have been
known for a long time, and extensive studies have been
made on their basic properties since the seminal work of
Nye and Berry in the early 1970s [1]. Recently, phase
singularities have come to attract more attention because
they are closely related to both the spiral solutions of the
complex Ginzburg-Landau equation [2] in nonlinear optics
[3] and in laser physics [4], and to defects in materials [5].
As pointed out by Freund [6], although phase singularities
have found their major application in the study of nonlinear
optical processes and particle manipulation [7], they are, in
fact, of the greatest intrinsic importance in linear scattering
of optical waves from random media. The density of
optical vortices has been given theoretically by Berry [8],
early experiments on the density of optical vortices have
been conducted by Baranova et al. who first found out that
the density of phase singularities is of the order of the
density of speckles [9], and numerical simulation of the
optical vortices in random wave fields has been performed
by Freund and Staliunas et al. [6,10,11]. Subsequently,
Berry and Dennis [12] have theoretically investigated the
statistical characteristics of vortices in a random field in
more detail. Here, we report the first experimental evidence
of the core structure of phase singularities in a random
speckle field, and conduct direct experimental verifications
of the statistical properties of optical vortices as predicted
by Berry and Dennis.

We detected the random wave field with a Mach-
Zehnder type interferometer, as depicted in Fig. 1.
Linearly polarized light from a He-Ne laser was split into
two beams by the beam splitter (BS1). To adjust the
speckle size and control the density of phase singularities,
a 10� microscope objective (MO1) is slid back and forth
to produce a proper illumination spot size on a 220-grit
sandblasted ground glass plate (GG). To avoid aliasing
errors in the sampling process, we chose the average
speckle size carefully so that a single speckle includes 20
pixels to 100 pixels along the line traversing it. The adjust-
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ment of a 10� microscope objective (MO2) requires spe-
cial care since the curvatures of the two wave fronts should
match exactly in order to create the isotropic speckle field.
This so-called lensless Fourier transform geometry pro-
duces an interferogram for the Fraunhofer field of the fully
developed speckle when the light is scattered from the
ground glass. From the interferogram recorded by a
charge-coupled device (CCD) camera (For-A HMC-
1170) with the pixel size 6:7 �m� 6:7 �m, we can di-
rectly reconstruct the complex random wave field by using
the Fourier transform method [13].

Usually, a complex scalar wave field in two dimensions
may be expressed as

~U�x; y� � Re�x; y� � j Im�x; y� � A�x; y� expfj	�x; y�g;

(1)

where Re and Im are the real and imaginary parts of the
optical field, A � 0 is the amplitude, and 	 is the phase.
Figure 2(a) shows an example of the reconstructed real part
of the complex random wave field around a phase singu-
larity, and Fig. 2(b) is the corresponding imaginary part
with the contour lines Re � 0 and Im � 0 inserted, re-
spectively. The phase singularity, occurring at the crossing
of the zero-contour lines, is a point in the plane. The
reconstructed phase is shown in Fig. 2(c) where the phase
is a 2
 helix around the phase singularity. Note that, in
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FIG. 3 (color online). Core structure around a phase singular-
ity with zero crossings of real and imaginary parts of random
field. (a) Intensity contours. (b) Current contours.
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FIG. 2 (color online). Reconstruction of real and imaginary
parts, and the corresponding phase structure around a phase
singularity. Left column: before interpolation; right column:
after interpolation.
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contrast to the discontinuous and complicated phase struc-
ture, the real and imaginary parts have an extremely simple
structure made of a smooth monotonic surface. Because of
the limited size of the illumination area on the ground glass
plate, the detected speckle field is strictly band limited.
Based on the Whittaker-Shannon sampling theory, which
assures that a band-limited signal can be recovered from its
sampled data to arbitrarily fine details, we can reconstruct
the complex random speckle field by a two-dimensional
interpolation. The interpolated surfaces for the real and
imaginary parts are shown in Figs. 2(d) and 2(e), respec-
tively. From these interpolated real and imaginary parts, we
can obtain the detailed phase profile around an optical
vortex, as shown in Fig. 2(f). The use of the data interpo-
lation enables us to observe the fine details of the phase
structure around an optical vortex, and provides a conve-
nient means to explore the core structure of an optical
vortex without recourse to high magnification with an
imaging system, which tends to reduce the field of view.

Generally, the phase change around a phase singularity
is not uniform [12,14]. The current associated with the
wave field is defined in the usual way by

~J�x; y� 	 Imf ~U
�x; y�r ~U�x; y�g � A2�x; y�r	�x; y�; (2)

with the vorticity given by ~!�x; y� 	 �r � ~J�=2 � rRe�
rIm.
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Figure 3(a) shows an example of an intensity distribu-
tion in the neighborhood of a phase singularity obtained by
experiment, and Fig. 3(b) is the corresponding local con-
tours of the current for the same optical vortex. As pre-
dicted by Berry, elliptical local contours of intensity
�I � A2� and circular flow lines of current are observed
around the phase singularity, which is located at the center
of contour ellipses and contour circles, respectively.
Figure 4 shows the relation between the magnitude of local
current ~J and its distance R from the phase singularity
along the line x � 1:5 in Fig. 3(b). With an increase in
radial distance, the magnitude of the local current increases
linearly. This demonstrates that the axis of the phase
singularity is perpendicular to the observation plane along
the optical vortex line in three-dimensional space.

Taking the optical vortex as the origin, and introducing a
cylindrical coordinate system �r̂; �̂; ẑ�, Dennis [12] has
derived a new version of Kepler’s law for phase singularity
given by R2@�=@	 � I=j ~!�0�j, which can be interpreted
so that, along the contour line of intensity, equal area
sectors of the ellipse are swept in equal intervals of phase
	. By the interpolation method introduced above, we ob-
tain the phase distribution on the contour line of intensity
�A� in Fig. 3(a). The relationship between the phase change
per unit azimuth angle, �	=��, and the square of the
distance R2 along this contour line is plotted in Fig. 5.
The value �	=�� increases linearly with R2. Figure 5
demonstrates the conservation of angular momentum de-
fined as R2@�=@	.

Among the statistics associated with optical vortices for
isotropic random wave, the density of vortices D is a
quantity of great interest. Under the assumption of a
Gaussian random process, this density has been given by
Berry [8], and can be written as

D � h��Re���Im�jRexImy � ImxReyji; (3)

where the subscripts denote partial derivatives and angular
brackets denote the ensemble average. On the other hand,
based on the prior knowledge that the vortices are neces-
sarily constrained only in the dark coherence areas of a
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FIG. 6 (color online). Experimental detection (�) and theo-
retical calculation (�) for density of phase singularities versus
speckle size�1.

FIG. 4 (color online). Magnitude of current ~J versus distance
from the phase singularity R. Open circles represent the points
along x � 1:5 in Fig. 3(b).
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speckle pattern, Freund estimated the density of phase
singularities with D � 0:5A�1

coh, where Acoh is the coher-
ence area [6,10]. Although, Baranova et al. have qualita-
tively investigated the relation between the density of
phase singularities and the radiation parameters in experi-
ments, to our knowledge, the direct quantitative experi-
mental verification of the theoretical predictions has not
been conducted yet. Because the partial derivatives in
Eq. (3) can be replaced by the finite difference of the
reconstructed field, the proposed technique permits a direct
experimental comparison with the theoretical predictions
in Eq. (3). By changing the illumination spot size, we can
control the density of phase singularities in the random
field. The relation between the density of phase singular-
ities and the reciprocal of the speckle size, i.e., A�1

coh, is
shown in Fig. 6. We found that the result of direct experi-
mental detection was in good agreement with that pre-
dicted by Berry’s formula. As expected, the density of
FIG. 5 (color online). Phase change along the azimuth angle
�	=�� versus R2.
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phase singularities is exactly proportional to the reciprocal
of the speckle size. The slope of the curve equals 0.46,
which is in reasonable agreement with Freund’s prediction.
We attribute this small difference to the definition of
speckle size. Figure 6 provides a direct experimental veri-
fication of Berry’s theory about the density of phase sin-
gularities, and it also supports the prediction given by
Freund.

Since the intensity contours around an optical vortex are
elliptical, let us next find the corresponding statistics of
eccentricity " based on our experimental data. Figure 7
shows the histogram of eccentricity based on 1120 mea-
surements; the histogram resembles an exponential proba-
bility density function. The high probability density is
concentrated for large values of eccentricity, indicating
that the typical core structure around a phase singularity
is likely to be strongly anisotropic. We calculated the core
eccentricity averages from these measured values and ob-
FIG. 7 (color online). Histogram of the result of 1120 measure-
ments of eccentricity of anisotropic ellipses. Dash-dotted line
represents an exponential distribution.
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FIG. 8 (color online). Scatterplot of eccentricity of the aniso-
tropic ellipse " versus difference angle �	RI.
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tained h"i equal to 0.86, which agrees with Berry’s theo-
retical value of 0.8697 [12] within the accuracy limitations
imposed by the relatively small numbers of measurements.

It is well known that vortices will be created at the
intersections of the zero crossings of the real and imaginary
parts, which provide the topological information about the
wave field [15,16]. An investigation of the relation between
the local topological structures of zero crossings and the
core anisotropy ellipses will give an insight into the evo-
lution of morphology for optical vortices. Of the various
parameters that determine the structure of the zero cross-
ings, the most important is the difference angle ��	RI 	
	R � 	I� between the directions (tangents) of the two zero-
crossing curves at the position of phase singularity. The
angle 	R (or 	I), which is always positive as measured
counterclockwise from the x axis, will be referred to as the
zero-crossing angle. The scatterplot in Fig. 8 shows the
relation between the zero-crossing difference angle �	RI
and its corresponding core eccentricity " of the anisotropic
ellipse. The difference angle �	RI is seen to have more
dispersed distributions for large eccentricity ", while, as "
decreases, the distributions of �	RI becomes more and
more concentrated around the two peaks �
=2, indicating
that the zero crossings for real and imaginary parts inter-
sect more and more orthogonally when the anisotropic
ellipse degenerates into a circle with its eccentricity ap-
proaching zero.

In summary, we have experimentally investigated the
local properties and some statistics that describe the ge-
10390
ometry of optical vortices for random waves with a novel
method. As compared with the theories given by Berry,
Dennis, and Freund, our experimental results demonstrate
adequate consistency. Further, the reconstruction of the
complex field from an interferogram, and phase retrieval
from the interpolated real and imaginary parts of this
reconstructed field make possible the observation of the
detailed local properties of an optical vortex, and introdu-
ces new opportunities to explore other topological vortex
phenomena.
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