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Hard-Loop Dynamics of Non-Abelian Plasma Instabilities
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Non-Abelian plasma instabilities may be responsible for the fast apparent quark-gluon thermalization
in relativistic heavy-ion collisions if their exponential growth is not hindered by nonlinearities. We study
numerically the real-time evolution of instabilities in an anisotropic non-Abelian plasma with an SU(2)
gauge group in the hard-loop approximation. We find exponential growth of non-Abelian plasma
instabilities both in the linear and in the strongly nonlinear regimes, with only a brief phase of
subexponential behavior in between.
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In this Letter we present first results on the real-time
evolution of non-Abelian plasma instabilities due to
momentum-space anisotropies in the underlying quark
and gluon distribution functions [1–7] in the nonlinear
hard-loop approximation. Such anisotropies are generated
during the natural expansion of the matter created during a
heavy-ion collision, and the resulting instabilities may be
responsible for the fast apparent thermalization [8], which
seems to be faster than can be accounted for by perturba-
tive scattering processes [9–12]. This type of plasma in-
stability is the analogue of the electromagnetic Weibel
instability which causes soft gauge (magnetic) fields to
become nonperturbatively large. Eventually this leads to
large-angle scattering of hard particles [13], thereby rap-
idly accelerating the isotropization and subsequent ther-
malization of an Abelian plasma with a temperature
anisotropy. However, in the non-Abelian case it is conceiv-
able that the intrinsic nonlinearities could cause the insta-
bilities to stop growing before they have large effects on
hard particles and therefore reduce their efficacy in isotrop-
izing a non-Abelian plasma.

The regime where the backreaction of collective fields
on the hard particles is still weak but where the self-
interaction of the former may already be strongly nonlinear
is governed by a ‘‘hard-loop’’ effective action which has
been derived in Ref. [6] for arbitrary momentum-space
anisotropies [14]. We discretize this effective action in a
local auxiliary-field formulation, keeping its full dynami-
cal nonlinearity and nonlocality. This is then applied to
initial conditions that allow for an effectively �1� 1�-
dimensional lattice simulation, extending a previous nu-
merical study [7] that used a static and linear approxima-
tion to the hard-loop effective action.

Discretized hard-loop dynamics.—At weak gauge cou-
pling g, there is a separation of scales in hard momenta
jpj � p0 of (ultrarelativistic) plasma constituents and soft
momenta �gjpj pertaining to collective dynamics. The
effective field theory for the soft modes that is generated
by integrating out the hard plasma modes at one-loop order
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and in the approximation that the amplitudes of the soft
gauge fields obey A� � jpj=g is that of gauge-covariant
collisionless Boltzmann-Vlasov equations [15]. In equilib-
rium, the corresponding (nonlocal) effective action is the
so-called hard-thermal-loop effective action [16] which
has a simple generalization to plasmas with anisotropic
momentum distributions [6]. Its contribution to the effec-
tive field equations of soft modes is an induced current of
the form [2,17]

j��A	 � 
g2
Z d3p

�2��3
1

2jpj
p�
@f�p�
@p�

W��x; v�; (1)

where f is a weighted sum of the quark and gluon distri-
bution functions [6]. The quantities W��x; v� satisfy

�v �D�A�	W��x; v� � F���A�v� (2)

with v� � p�=jpj � �1; v�, D� � @� 
 ig�A�; �	, metric
convention �� 


�, and this has to be solved self-
consistently with D��A�F�� � j�. At the expense of hav-
ing introduced a continuous set of auxiliary fieldsW��x; v�
the effective field equations are local, but nonlinear in the
case of a non-Abelian gauge theory.

We are interested, in particular, in the case where there is
just one direction of momentum-space anisotropy (e.g., the
collision axis in heavy-ion experiments), so we assume
cylindrical symmetry and parametrize the first derivatives
of the hard particle distribution function by
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Because p�W� � 0, we have

j��x� �
1

2
g2

Z d3p

�2��3
v��~f1W0�x;v� � ~f2Wz�x;v�	: (4)
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In the isotropic case one has ~f2 � 0, and only W0

appears, whose equation of motion (2) is driven by (chro-
mo)electric fields; in the anisotropic case, however, Wz

enters, whose equation of motion involves the z component
of the Lorentz force.

The induced current (1) is covariantly conserved as one
can verify by partial integration with respect to p� [6], but
no partial integration is needed for parity invariant distri-
bution functions f. This is only a mild restriction on the
choice of f’s, but a great advantage for the following
discretization. For f�p� � f�
p�, the two terms in the
current (4) are covariantly conserved individually, because
Eq. (2) implies that D � j /

R
d3p�~f1F0�v� � ~f2Fz�v��,

which vanishes by symmetry.
Our aim is to study the hard-loop dynamics in lattice

discretization where we approximate the continuous set of
fieldsW��x; v� by a finite number of fields. Because Eq. (2)
does not mix different v’s, a closed set of equations is
obtained when the integral in Eq. (4) is discretized with
respect to directions v

j��x� � g2
Z p2dp

�2��2
1

N

X
v
v��~f1W0

v �x� � ~f2Wz
v�x�	

�
1

N

X
v
v��avW0

v �x� � bvWz
v�x�	; (5)

where the N unit vectors v define a partition of the unit
sphere in patches of equal area, and where av and bv are
then fixed coefficients for a given distribution function f.
Covariant conservation of j is ensured by symmetric
choices of the set of v’s which satisfy

P
vavv � 0,

P
vbv �

0, and
P

vbvv? � 0, with v? � v
 vzez.
Given such a discretization, which is a discretization of

the phase space of the hard particles with respect to the
directions of their momenta, only N auxiliary fields
W v � avW0

v � bvWz
v participate in the dynamical evolu-

tion. The full hard-loop dynamics is then approximated by
the following set of matrix-valued equations,

�v �D�A�	W v � �avF
0� � bvF

z��v�; (6)

D��A�F
�� � j� �

1

N

X
v
v�W v; (7)

which can be systematically improved by increasing N .
A different possibility for discretizing hard-loop dynam-

ics that has been employed previously in isotropic plasmas
is a decomposition of the auxiliary fields W��x;v� into
spherical harmonics [18,19]. Our proposal is slightly sim-
pler, but also more flexible in that it allows one to, e.g.,
improve approximations in highly anisotropic cases with
cylindrical symmetry by selectively increasing the resolu-
tion in the z direction more than in the ’ direction.

The dynamical system described by Eqs. (6) and (7) has
constant total energy of the form

E �
Z
d3xtr�E2�B2�jt�

Z t

t0
dt0

Z
d3x2trjt0 �Et0 : (8)
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The part containing the induced current involves

tr j � E �
g2

4
@�

Z d3p

�2��3
~f1v

�W2
0

�
g2

2

Z d3p

�2��3
~f2Wz�v �D�W0; (9)

which shows that in the isotropic case (~f2 � 0) there is a
local, positive definite energy contribution from the plasma
[20]. However, in the general anisotropic case, positivity is
lost, corresponding to the possibility of plasma instabil-
ities, where energy may be extracted from hard particles
and deposited into the soft collective fields without bound
as long as the hard-loop approximation A� � jpj=g re-
mains valid.
�1� 1�-dimensional lattice simulation.—When only

z-dependent initial conditions are imposed, the entire
dynamics proceeds �1� 1� dimensionally and we can
take all collective fields as �1� 1� dimensional, though
the underlying hard degrees of freedom are, of course, still
�3� 1� dimensional, with a discrete set of directions v for
their (conserved) momenta. This dimensionally reduced
situation already allows us to study the evolution of non-
Abelian Weibel instabilities, which in the linear (Abelian)
regime are formed by (superpositions of) transverse stand-
ing waves with exponentially growing amplitudes.

We have solved Eqs. (6) and (7) in this dimensionally
reduced situation by lattice discretization, closely follow-
ing Ref. [7] whose authors considered a toy model corre-
sponding to an induced current which is simply

jAL� � �2A�; � � x; y: (10)

As was shown in Ref. [7], this reproduces the static limit of
the anisotropic hard-loop effective action for fields that
vary only in the anisotropy direction, but it neglects its
general frequency dependence and dynamical nonlinearity.
This is now provided through Eqs. (6) and (7).

As in Ref. [7] we work in temporal axial gauge A0 � 0
and take initial conditions corresponding to small random
chromoelectric fields E � 
@tA with polarization trans-
verse to the z axis, and all other fields vanishing, which in
our case includes the auxiliary fields W v. This initial
condition satisfies the Gauss law constraint, D �E �
N 
1P

vW v, whose continued fulfilment is monitored in
the simulation, but not enforced. As a further nontrivial
check of our numerics, we tracked conservation of the total
energy (8).

In order to be able to compare with the analytical results
of Ref. [4], we consider an anisotropic distribution function
f � N���fiso�p2 � �p2z�. This determines the coefficients
in Eq. (5) according to

av � m2�1� �v2z�

2; bv � �vzav; (11)

wherem2 � N���m2
D�0� withmD�0� the Debye mass of the

isotropic case � � 0, and N��� a normalization factor
which equals N��� �

������������
1� �

p
if one requires that the num-
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ber density of hard particles remains the same for different
values �.

For � > 0 transverse modes with wave vector jkj<�,

�2 �
1

4

�
1�

�
 1���
�

p arctan
���
�

p �
m2; (12)

are unstable and grow with a k-dependent growth rate ��k�,
shown in Fig. 1 for � � 10, which has a maximum �� at
nonvanishing jkj � k� and a zero at k � 0. By contrast,
the growth rate implied by the toy model (10) is given by

��
�����������������
�2
k2

p
, whose maximum is at k � 0 and equals �.

In the linearized case one can also determine the disper-
sion laws analytically in the case of finite N . Figure 1
compares the growth rates ��k� for full and discretized
hard loops with N �N z�N ’�20�5�100, which
shows that the latter give very accurate approximations
for N * 100. As another example, the asymptotic mass
of the stable propagating modes with jkj � � is given for
full hard loops by m2

1 � m2=�2
���
�

p
� arctan

���
�

p
, which for

� � 10, N � 100 is reproduced with an error of only
0.017%.

The results of our lattice simulations of the nonlinear
evolution for a gauge group SU(2) are finally shown in
Figs. 2 and 3, where we have used the parameters � � 10,
N z �N ’ � 20� 5 for discretizing the unit sphere with
uniform spacing in z and ’. The one-dimensional spatial
lattice has 10 000 sites, periodic boundary conditions, and
lattice spacing corresponding to am1 � 0:028 so that the
physical size is L � 280m
1

1 . Using a leapfrog algorithm
with time steps %=a � 1=100, we track the evolution of a
single field configuration [21] with random initial seed
chromoelectric field of root-mean-square amplitude
0:012m2

1=g. The Gauss law constraint turns out to remain
preserved within machine accuracy; the total energy (8) is
conserved within less than 1%, with the percentage level
being reached only at the largest times when the energy in
the soft fields has grown by more than a factor of 106 (full
details will be given elsewhere).

The upper panel of Fig. 2 shows the evolution of

jrms �

	Z L

0

dz
L
2 tr�j2�



1=2
; (13)
FIG. 1. The growth rate ��k� of unstable modes for the dis-
cretized hard loops with N � 100 (dashed line) in comparison
with the continuum result (solid line) for � � 10.
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which (after some initial wobble) grows exponentially with
a growth rate that is most of the time only slightly below
��, except for a transitory reduction at the beginning of the
nonlinear regime, when jrms �m3

1=g. Also shown is the
dimensionless observable �C, defined by [22]

�C �
Z L

0

dz
L

ftr��i�jx; jy	�2�g1=2

tr�j2x � j2y�
; (14)

and giving a measure of local ‘‘non-Abelianness.’’ In the
toy model of Ref. [7] it was found that �C suddenly begins
to decay exponentially when fields get strong, with a decay
rate similar to the growth rate of jrms. In the hard-loop case,
we observe a similar phenomenon, but the decay rate of �C
is much smaller (and also less constant once the decay
begins).

Reference [7] also observed a concurrent global
Abelianization, by comparing the correlation among par-
allel transported spatially separated commutators to the
correlation of parallel transported fields. A correlation
length �A defined through the former was found to ra-
pidly grow to lattice size when �C begins to decay, whereas
no such growth occurred in the general field correla-
tion length �'. In the lower panel of Fig. 2 we show the
analogous quantities computed using currents instead
of field values [22], and we found that correlated Abelian-
ization takes place over extended domains,which remain
bounded, however. In fact, �A turns out to be comparable
with the scale of maximal growth (� � 2�=k� � 7m
1

1 .
FIG. 2 (color online). The average current jrms and the average
relative size �C of commutators �jx; jy	 as a function of time
(upper panel); the Abelianization correlation length �A�j	 and
the ordinary correlation length �'�j	, normalized to the scale of
maximal growth (� (lower panel).
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FIG. 3 (color online). Average energy densities E in transverse
(longitudinal) chromomagnetic (electric) fields and the total
energy density contributed by hard particles, E�HL�.
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By contrast, in the model of Ref. [7] k� vanishes, which is
presumably responsible for the different global behavior.

Figure 3 shows how the exponentially growing energy
transferred from hard to soft scales is distributed among
chromomagnetic and chromoelectric collective fields. The
dominant contribution is in transverse magnetic fields, and
it grows roughly with the maximum rate �� both in the
linear and in the highly nonlinear regimes, with a transitory
slowdown in between. Transverse electric fields behave
similarly, and are suppressed by a factor of the order of
���=k��

2 [23]. The appearance of longitudinal contribu-
tions, which are absent in the initial conditions we have
chosen, is a purely non-Abelian effect. While completely
negligible at first, they have a growth rate which is double
the one in the transverse sector, and they begin to catch up
with the latter just when local Abelianization sets in. At
that stage there appears to be some complicated rearrange-
ment taking place, which delays the exponential evolution
by a time �t� �
1

� , but subsequently the growth rate gets
restored roughly to its previous value. Eventually there will
be a point where the hard-loop approximation breaks
down, namely, when the energy transferred from hard to
soft modes becomes comparable to that initially present in
the former.

From the above numerical results on the hard-loop
dynamics of non-Abelian plasma instabilities we conclude
that the latter do not saturate until they begin to have large
effects on hard particle trajectories, even though our simu-
lations indicate complicated dynamics and only limited
Abelianization of the unstable modes. Therefore it appears
indeed possible that non-Abelian plasma instabilities are
responsible for accelerated thermalization in a weakly
coupled quark-gluon plasma.
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