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Quantum Opacity, the RHIC Hanbury Brown–Twiss Puzzle, and the Chiral Phase Transition
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We present a relativistic quantum-mechanical treatment of opacity and refractive effects that allows
reproduction of observables measured in two-pion Hanbury Brown–Twiss (HBT) interferometry and pion
spectra at RHIC. The inferred emission duration is substantial. The results are consistent with the emission
of pions from a system that has a restored chiral symmetry.
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The space-time structure of the ‘‘fireball’’ produced in
the collision between two heavy ions moving relativisti-
cally is studied by measuring the two-particle momentum
correlations between pairs of identical particles. The quan-
tum statistical effects of symmetrization cause an enhance-
ment of the two-boson coincidence rate at small
momentum differences that can be related to the space-
time size of the particle source. This method, called
Hanbury Brown–Twiss (HBT) interferometry, has been
applied extensively in recent experiments at the
Relativistic Heavy Ion Collider (RHIC) by the STAR and
PHENIX collaborations [1].

The invariant ratio of the cross section for the production
of two pions of momenta p1, p2 to the product of single
particle production cross sections is analyzed as the corre-
lation function C�p1;p2�. We define q � p1 � p2 and K �
�p1 � p2�=2, with KT as the component perpendicular to
the beam direction. (We focus on midrapidity data, where
K � KT .) The correlation function is parameterized for
small q as C�q;K� � 1� ��1� R2oq

2
o � R2sq

2
s � R2l q

2
l �,

where o, s, l represent directions parallel to KT , perpen-
dicular to KT and the beam direction, and parallel to the
beam direction [2]. Early [3] and recent [1] hydrodynamic
calculations predicted that a fireball evolving through a
quark-gluon-hadronic phase transition would emit pions
over a long time period, causing a large ratio Ro=Rs. The
puzzling experimental result that Ro=Rs � 1 [4] is part of
what has been called ‘‘the RHIC HBT puzzle’’ [5].

Data show the medium produced by 200 GeV Au� Au
collisions to be very dense. Consequently, pions should
emerge from an opaque source [6]. Analyticity tells us that
opacity implies accompanying refractive effects. Our pur-
pose here is to derive and apply a relativistic quantum-
mechanical treatment of opacity and refractive effects that
simultaneously reproduces the values of Ro, Rs, Rl, and the
pion spectrum for central RHIC Au� Au collisions [7,8].

The experimental observables depend on an emission
function, the Wigner transform of the density matrix for the
currents that emit pions. This emission function has often
been modeled (see review [9]) as a function S0 having the
form of a hydrodynamic source parametrization with ap-
proximately boost-invariant longitudinal dynamics:
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S0�x;K� � S0��; ��B��b;KT�=�2��
3 (1)

S 0��; �� �
cosh�������������������
2�����2

p exp
�
�

��� �0�2

2����2
�

�2

2��2

�
(2)
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1

exp��K 	 u����=T
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��b�; (3)

in which components of x� are expressed using variables

� �
���������������
t2 � z2

p
, � � 1

2 log�t� z�=t� z, b � �x1; x2�, and
K 	 u � MT cosh� cosh�t�b� � KT sinh�t�b� cos�, where
� is the angle between KT and b,M2

T � K2T �m2�, and��
is the pion chemical potential. The function ��b� repre-
sents the cylindrically symmetric transverse source den-
sity. We use ��b� � �1=fexp��b� RWS�=aWS
 � 1g�2,
reflecting superimposed nuclei. Equation (1) represents
the transverse flow rapidity using a linear radial profile of
strength �f: �t�b� � �f

b
RWS

. Equation (1) incorporates the
finite lifetime and size of the source: pions are emitted for a
duration controlled by the parameters �� and ��. Using
Eq. (1) does not capture all of the physics. As the basis of
the blast wave parametrization, it gives �� � 0 and does
not predict the magnitude of the pion spectrum [10].

The salient feature of the 200 GeV data is the high
density of the produced matter, so we treat the effects of
pion interactions with the dense medium. We adopt a
single-channel approach that uses the interaction-distorted
incoming wave ����

p1 �x1� in which [11]:

S�x;K� �
Z
d4K0S0�x;K0�

Z d4x0

�2��4
e�iK

0	x0

�����
p1 �x� x0=2�����

p2 �x� x0=2�: (4)

One obtains the single-pion emission function from Eq. (4)
by using the same momentum (either p1 or p2) to compute
����

p .
Using Eq. (4) requires evaluating an eight-dimensional

integral and modeling the interactions that determine
����

p1 . We use symmetries to reduce the number of integrals
and obtain a tractable treatment of the interactions. First,
note that ����

p �x� is an energy eigenfunction [11]:
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����
p �x� � e�i!px0����

p �x�. We assume that the matter
formed in the central region of the collision is cylindrically
symmetric with a very long axis, so that

����
p1;2�x� � e�iqlz=2 ���

p1;2�x? � b�;

p1;2 � K� qT=2� ẑql=2; (5)
with  ���
p �b� obtained by solving a reduced two-

dimensional Klein-Gordon equation

� �r2? �U�b�� ���
p �b� � p2 ���

p �b�: (6)
The ‘‘optical potential’’ U is a complex, azimuthally sym-
metric function depending on pion momentum and local
density, which represents the strength of the interaction
between a pion and the medium. Within our formalism, the
influence of time-dependent effects in U introduced by the
time-dependent source S0 is incorporated in the energy
dependence of the optical potential. However, we note
that the pion-medium interaction time is restricted by S0.

At large values of K the solution of Eq. (6) reduces to
well-known semiclassical (eikonal) expression, but our
procedure is more general. For example, at K � 0 there
is no distinction between the out and side directions, so
Ro � Rs. This constraint is violated if the eikonal approxi-
mation to (6) is used. We use a partial wave expansion:

 ���
p �b� � f0�p; b� � 2

X
m�1;1

fm�p; b���i�m cosm� (7)
to solve Eq. (6) exactly and maintain the constraint.
The optical potential accounts for situations in which the

pion changes energy or disappears entirely due to its
interactions with the dense medium. Suppose, e.g., that
the medium is a gas of pions. Then �� scattering would be
the origin of U. In the impulse approximation, the central
optical potential would be U0 � �4�f�0, where f is the
complex forward scattering amplitude and �0 the central
density. For low energy pion-pion interactions,
4� Im �f�p�
 � p&, with & � 1 mb. At a momentum p �
1 fm�1, using a pion density about 10 times the baryon
density of ordinary nuclear matter, Im �U�0�
 �
�0:15 fm�2, representing significant opacity. Further-
more, if two interacting pions each have less energy than
half of the rho meson mass, the final state interactions
would be strongly attractive.

Now we consider chiral symmetry, which gives a gen-
eral form for the dispersion relation of low energy pions in
nuclear matter:
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!2 � v2�p̂2 �m2��T��: (8)
Here m��T� is the � screening mass, v is the so-called �
velocity, p̂ is the momentum operator, and the pole mass is
m��T�v. Son and Stephanov [12] argued that v and the
pion pole mass decrease at temperatures near the critical
temperature while the screening mass increases. We start
with the general form (8) that appears in both Refs. [12,13]
and use data to determine the parameters. Define an
equivalent U by using !2 � p2 �m2�, Eq. (8), and the
Klein-Gordon equation p̂2 �U � p2 to obtain:

U � ��m2� � v2m2��T�
 � �1� v2�p̂2: (9)
For matter of finite size, Eq. (9) suggests a potential with
terms constant and proportional to p̂2. The latter has the
form w2p2 �r 	 wKr, where w2;K are complex constants.
For the 200 GeV data, the results prefer a small value of
wK, so we take wK � 0. The optical potential is therefore
modeled as:

Up�b� � ��w0 � w2p2���b�; (10)
withw0 real (no opacity at p � 0). The density profile ��b�
is that specified in S0�x; K�.

Equations (1) and (10) are the essence of our model.
These may be compared with the Buda-Lund model [14] in
which the temperature and fugacity are taken as position-
dependent functions appearing in a Boltzmann distribu-
tion. The effects of our optical potential could provide an
explanation of those deduced dependencies.

The use of Eqs. (5) and (1) in Eq. (4) gives

S�x;K� �
1

�2��2
S0��; ��eiq

0t�iqlz
Z
d2b0 ~B��b;b0�

�  ���
p1 �b� b0=2� ���

p2 �b� b0=2�; (11)
where ~B��b;b0� �
R
d2K0

TB��b;K
0
T� exp��iK

0
T 	 b

0
. The
range of the variable b0 appearing in ~B��b;b0� is controlled
by a size, 1=T, that is much smaller than the source size.
Thus it is reasonable to ignore the �b0=2 appearing in (11).
Maintaining the phases is important, so we use  ���

p �b �

b0=2� � e�ip	�b�b0=2�)p�b � b0=2� ! e�ip	�b�b0=2�)p�b�.
This approximation is exact in the different limits: plane
wave, short wavelength, long wavelength, and RWST ! 1.

We expand the exponentials in (11) involving q0, ql to
second order, expand the Bose-Einstein function in a series
of Boltzmann functions of temperature Tn � T=n, and
analytically evaluate integrals over � and � to obtain:
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C�q;KT� � 1� q2l R
2
l � q2o+
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2

�11�22
; �ij �

X
n

Z
d2bf0�-n�b�� 

���
pi �b� ���

pj �b�Bn�b;KT�;

Bn�b;KT� � exp
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(12)
where -n�b� � MT cosh�t�b�=Tn � 1=��2, f1�-� �
2K0�-�=-� 4K1�-�=-2, f0�-� � 2K1�-�, f2�-� �
K0�-� � K2�-�, f3�-� � 2�K1�-� � K2�-�=-
, and Kj are
modified Bessel functions. The pion spectrum is given by:�

dN
2�MTdMTdY

�
jYj<0:5

�
�0
8�3

e1=��F0�KT�: (13)

The angular integrals are performed analytically using
Eq. (7). The transverse HBT radii are R2i �KT� �
�2� C��qi; KT�
=�q

2
i , with i � o, s and �qi � KT=40

[15].
The values of the parameters T, �f, ��, RWS, aWS, w0;2,

�0,��, and�� are varied to reproduce the STAR 200 GeV
data for Ro, Rs, Rl [7], and the magnitude and shape of the
pion spectrum [8]. The resulting parameters are displayed
in Table I, with the variances that produce a )2 increase of
one unit. The agreement of the curves with STAR HBT
radii [7] in Fig. 1 and with the STAR pion spectrum [8] in
Fig. 2 is quite good, giving a )2 � 3:7 per data point and
5.6 per degree of freedom.

We assess and interpret the values of our parameters.
The temperature (T � 173 MeV) is comparable to the
Tc expected for a chiral phase transition
(�160 MeV). The flow rapidity (�f � 1:31) corresponds
to a maximum flow velocity of 0:85c, which is not un-
reasonable. The source size is large (RWS � 11:7 fm),
4.4 fm larger than a gold nucleus (R � 7:3 fm). If the
system requires an expansion time �0 � 8:22 fm=c to ex-
pand by this amount, the average expansion velocity would
be about 0:5c, which is reasonable. The emission duration
(�� � 2:9 fm=c) is comfortably smaller than �0. The lon-
gitudinal width (�� � 1:063) is smaller than expected, but
large enough that the system’s axial length (� 2�0���
17:5 fm) is sufficient for the approximate validity of
Eq. (5).

We assess the strength of U by examining it at p �
1 fm�1. At the system center, the momentum-dependent
term of U is ��0:58� 0:12i� fm�2. To understand the
imaginary part, which is comparable to our estimate given
TABLE I. Parameters of the

T�MeV� �f ���fm=c� RWS�fm� aWS�fm� w0�f

173.2 1.314 2.852 11.728 0.725 0.1
�1:6 �0:025 �0:067 �0:056 �0:015 �0
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above (and consistent with the presence of high density
matter), consider the equivalent classical mean free path:
p=jIm �U
j � 8 fm� 2RWS. Thus, the imaginary poten-
tial is large enough to restrict emission of pions from
regions deep inside the medium. To understand the real
part, note that the strength of the attraction is greater than
m2� � 0:49 fm�2. Thus inside the medium, the pion acts as
if it has no mass. This is why we assert that a chiral phase
transition has occurred.

We further recall Eq. (9) and note that a momentum-
dependent term of �0:58 fm�2 corresponds to v � 0:65.
The momentum independent term of U (�0:14 fm�2)
corresponds to that of vm��T� � 0:6 fm�1. These values
are comparable to the estimates of [12].

The chemical potential and Bose-Einstein distribution
have modest effects on the radii but are very important for
the normalization and slope of the pion spectrum.

Figures 1 and 2 show the importance of both the real and
imaginary parts of the optical potential: omitting either
drastically changes the predictions. The attractive real
potential is the critical element needed to reproduce the
KT dependence of Ro and RS.

We predict peaks in Ro and Rs at low momentum (p �
15–65 MeV=c) and a rapid rise and peaking in the low-
momentum spectrum. This pionic version of the Ramsauer
effect, in which cross sections show peaks when the scat-
tered wave is in phase with the incident plane wave. We
confirm the computed existence of such peaks through
analytic calculations for a purely real attractive square well
potential. The PHOBOS detector (and perhaps the
BRAHMS detector) at RHIC could, in principle, confront
these low-momentum predictions of structure.

Our relativistic quantum-mechanical treatment of re-
fractive and opacity effects on two-pion correlations and
� spectra has surmounted a number of technical problems
associated with previous semiclassical approximations,
while achieving an excellent description of the 200 GeV
STAR data. The results are consistent with the interpreta-
calculation with variances.

m�2� w2 �0�fm=c� �� ���MeV�

37 0:582� i0:121 8.23 1.063 123.2
:046 �0:014 �0:002 �0:10 �0:032 �1:1
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FIG. 2 (color online). Pion momentum spectrum. Data [8]: r
(green) ) ��; 4 (red) ) ��. Inset is low-KT prediction.
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FIG. 1 (color online). HBT radii Rs, Ro, Rl, and the
ratio Ro=Rs; data [7]: r�green� ) ����; 4�red� )
����. Curves: solid �black� ) full calculation;
dotted �green� ) �f � 0 (no flow); dashed �red� ) Re �U
 �
0 (no refraction); dot-dashed �blue� ) U � 0 (no potential),
double-dot-dashed �magenta� ) substituting Boltzmann for
Bose-Einstein thermal distribution. Insets show predictions of
low-KT resonance behavior in Ro and Rs.
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tion that the dense medium has undergone a chiral phase
transition.
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