week ending

PHYSICAL REVIEW LETTERS 18 MARCH 2005

PRL 94, 102002 (2005)

Dissolving N = 4 Loop Amplitudes into QCD Tree Amplitudes
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We use the infrared consistency of one-loop amplitudes in N = 4 Yang-Mills theory to derive a
compact analytic formula for a tree-level next-to-next-to-maximal helicity-violating gluon scattering
amplitude in QCD, the first such formula known. We argue that the infrared conditions, coupled with
recent advances in calculating one-loop box coefficients, can give a new tool for computing tree-level
amplitudes in general. Our calculation suggests that many amplitudes have a structure which is even
simpler than that revealed so far by current twistor-space constructions.
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Introduction.—Gluon scattering amplitudes in Yang-
Mills theory have many remarkable properties. Witten
discovered that they are localized on curves in twistor
space [1] and proposed an interpretation for this fact in
terms of a twistor string theory. There has been great
success in calculating tree-level [1-7] amplitudes using
twistor-inspired technology, including the construction of
a one-line (though implicit) formula for the complete tree-

level S matrix [4].
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PACS numbers: 12.38.Bx, 11.15.Bt, 11.55.Bq

Twistor string theory led in [5] to the development of a
set of diagrammatic rules for the calculation of tree-level
amplitudes which are far simpler than standard Feynman
diagrams. Nevertheless, there is reason to believe that the
formulas generated by the Cachazo-Svicek-Witten (CSW)
rules grow in complexity much more quickly than the
underlying amplitudes do. In this Letter we report a com-
pact analytic representation for the simplest next-to-next-
to-maximal helicity-violating (NNMHV) amplitude [8]
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which otherwise would require summing 44 CSW dia-
grams to write down [10]. Previously, no such compact
expression was known for any NNMHYV amplitude. The
“+flip” denotes that this full expression should be added
to its image under the operation which relabels i — 9 — i
and simultaneously exchanges () and [].

Gluon scattering amplitudes are obviously of phenome-
nological interest as they are the basic building block for
computing QCD backgrounds to jet production. From a
theoretical standpoint, perhaps the most interesting fact
about the formula (1) is that such a compact representation
of this amplitude exists at all. The existence of this formula
suggests that there is hidden structure and simplicity under-
lying tree amplitudes even beyond what the CSW rules
expose [11]. Moreover, the formula (1) is much simpler
than we had any right to expect, given the procedure used
to compute it. Rather, (1) hinges upon the miraculous can-
cellation of a large number of terms, which at the moment
we cannot explain. The lesson we would like to draw from
this exercise is that there still is a lot to learn about the
structure of Yang-Mills amplitudes, even at tree level, and,
in particular, that CSW is not the end of the story [13].
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Recently there has also been much progress on the
computation of one-loop amplitudes [9,12,14-28]. In par-
ticular, a prescription has recently been developed [27] for
calculating the coefficient of any one-loop box function in
the N' = 4 theory, based on the notion of generalized cuts
[9,29-31] (in this case, quadruple cuts). One-loop ampli-
tudes have infrared (IR) singularities, and the leading
singularities are proportional to tree amplitudes in a way
that we review below. Enforcing this fact may provide, as
pointed out in [9], new and more compact expressions for
tree-level scattering amplitudes. We derived the tree-level
formula (1) by computing several box coefficients appear-
ing in the one-loop amplitude corresponding to (1) and
then reading off its IR singularity. In the next section we
review the necessary ingredients and discuss a couple of
strategies for maximizing the efficiency of this kind of
computation.

Trees from loops.—The set of dimensionally regulari-
zed integrals which can appear at one loop has been
completely classified. Any n-gluon partial amplitude in
(4 — 2€)-dimensional N = 4 super-Yang-Mills theory
can be expressed in terms of (}) box functions B,,(i, j, k, )
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where w is a renormalization scale. The box functions are
completely known (but complicated) functions of the mo-

menta p; of the n gluons. Therefore the decomposition (2)
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The indices indicate the four external legs which immedi-
ately follow (in a clockwise sense, conventionally) the four
internal propagators in the corresponding box integral.
Explicit formulas for all box functions can be found in
any standard reference, and we will not repeat them all here
but rather provide (3) as an illustrative example for what
follows.

Each box function contains @(1/€) terms of the form

— ln(—tE’]) /€ for various i and r, with coefficients 0, *1,
or 1. Meanwhile, the O(1/€) IR singularity in any one-
loop amplitude is known on general grounds to be [32—34]
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reduces the problem of calculating any one-loop amplitude
to the problem of calculating the (relatively much simpler)
box coefficients c,.;;x;, which can depend on the momenta
as well as the helicities of the n gluons.

The box functions are typically transcendental functions
of the momenta (involving logarithms and dilogarithms).
They are most conveniently labeled [12] by a set of dis-
tinct, ordered indices i, j, k, I chosen from the set{1, ..., n}.
For example,
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One constraint on the box coefficients is that they conspire
in such a way that the IR divergences in the box functions
combine together so that this equation is satisfied. A set of
n(n — 3)/2 linear equations, n of which involve the tree
amplitude, can be deduced by equating (2) to (4) and

reading off the coefficients of the various — ln(—tEr])/ €
poles.

It is likely that in many cases, the IR equations implied
by (4) allow one to write down explicit formulas for tree
amplitudes where none was previously known, or to write
down more compact formulas for previously known
amplitudes. An example of the latter is the remarkable
formula

[6]k21]3)3

which follows from the collinear limit of a three-term rep-
resentation of the 7-particle amplitude A(17,27,37, 47,
5%,6%,7") found in [9] using the IR equations for n = 7.

A particularly compact formula which follows from (4)
is

i+1
+n—2
Ae(1,. . m) = o > coefficient

j=i+2

(6)
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for any i. This formula expresses an arbitrary tree-level
amplitude as a sum of n — 3 box coefficients of the corre-
sponding one-loop amplitude. For n = 8 we have verified
that no linear combination of the IR equations allows one
to extract the tree amplitude from fewer than n —3 =5
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coefficients. We conjecture that this remains true for any n,
so that (6) is in a sense the most efficient linear combina-
tion of IR equations possible. Of course, not all box co-
efficients are equally simple to compute, so in practice it
may be worthwhile to consider a linear combination of IR
equations which has a larger number of terms which are
however individually simpler to compute. We will encoun-
ter an example of this in the next section.

The A(17,27,37,47,5%,6%,7%,8%) amplitude.—In
this section we investigate the tree-level eight-gluon am-
plitude

Ag=A(17,27,37,47,5%,6%,7",8%), @)

for which no compact analytic formula was previously
known. As a preliminary remark we note that Ag possesses
two commuting Z, symmetries. One is the symmetry under
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the flip operation defined by
FIX]=X(142<35-86«7). (8)

The other is a conjugation symmetry combined with a
relabeling of the indices, which we will denote by

GIX]=X(152<63<74<38). )

The bar over the X denotes the reversal of the helicities of
the inner products, i.e., () < [].

In order to calculate Ag we use the IR equations intro-
duced in the previous section, combined with the new
technology of [27] for calculating one-loop box coeffi-
cients using quadruple cuts. In this approach, the coeffi-
cient of a box function is given by the product of the four
tree amplitudes sitting at the corners of the box. This
construction implies that the complexity of a box coeffi-
cient is indicated by the complexity of the tree amplitudes
sitting at the corners of the box. Moreover, when coupled
with the IR equations, it implies that various tree ampli-
tudes satisfy recursion relations relating n-particle ampli-
tudes to amplitudes with fewer particles. In general these
relations are quartic, although we see that the choice (6)
actually renders them quadratic since only two of the four
corners involve a nontrivial lower-point tree amplitude.

In particular, the simplest box coefficients are those
which have a maximally-helicity-violating (MHV) ampli-
tude on each corner, which is guaranteed to happen when
each corner has fewer than four external legs. Let us refer
to these as “(MHV)* boxes”. For n = 8, it turns out that
there is an almost unique [35] linear combination of IR
equations which expresses the desired tree amplitude Ag in
terms of the coefficients of (MHV)* boxes only:

4Ag = X + F[X] + G[X] + F[G[X]], (10)

where

1
X=X =cCi236 T Ciaa6 T Ci347 T 5 s34 + c367 T €363
(11)

Although it is intriguing that it is possible to express the
tree amplitude Ag in a manifestly symmetric manner using
only (MHV)* boxes, it is not clear that (10) would provide
the most compact representation of Ag.

An alternate representation of Ag is given by the same
formula (10), but with

1
X =X, = cCio36 T C1237 T Croae T Croar + 5 C12ss (12)

where we omitted a term c,56, Which is easily seen to be
zero by analyzing the holomorphic anomaly of the t[14] cut.
We have worked out all of the coefficients appearing in
(12), and the purpose of this Letter is to point out a most
unexpected surprise: almost all of the terms appearing on

the right-hand side of (12) cancel [after summing over the
Z, X Z, images in (12)]. The only terms remaining are
2 2

X2 - _—b+7 - —b+7 y
t[lz]l[24] 1236 l[lz] t[73] 1237

(13)
where the b’s are partial contributions to the 1236 and 1237
integral coefficients. In particular, they denote the follow-
ing quadruple cuts:

3~ 37 4-
— _ — 4
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which we computed using the methods of [27], giving
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The 1236 and 1237 boxes each receive a contribution from
a second helicity assignment which we have not drawn
here and which is not needed in (13). The other factors
appearing in (13) are the usual conversion factors between
integral coefficients and box coefficients.

It is not difficult to verify that X, satisfies the relation

X, + F[G[X,]] = F[X,] + G[X,], (16)

which renders two of the terms in (10) redundant, as
anticipated in (1) (where we use flip to denote the compo-
sition F[G[]]). In conclusion, let us note that we have
verified numerically that the formula (1) agrees with the
amplitude obtained by summing up the necessary 44 CSW
diagrams. As further evidence, it is rather straightforward
to check that (1) has all of the correct collinear limits. In
particular, it reproduces the simple three-term representa-
tion of the 7-particle tree amplitude found in [9], as one
might expect from taking the collinear limits of the full box
coefficients entering into the calculation.

We would like to thank Zvi Bern for many helpful
discussion and correspondence, and especially for sending
us the list of IR equations for n = 8. R. Roiban is grateful
to the KITP for hospitality and support during the QCD and
String Theory Workshop, where this work was initiated.
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Science Foundation under Grant No. PHY99-07949
M.S., A.V), and by the DOE under Grant No. DE-
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(and nonzero), so this equation is not useful.



