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Consistent Discretization and Loop Quantum Geometry
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We apply the ‘‘consistent discretization’’ approach to general relativity leaving the spatial slices
continuous. The resulting theory is free of the diffeomorphism and Hamiltonian constraints, but one can
impose the diffeomorphism constraint to reduce its space of solutions and the constraint is preserved
exactly under the discrete evolution. One ends up with a theory that has as physical space what is usually
considered the kinematical space of loop quantum geometry, given by diffeomorphism invariant spin
networks endowed with appropriate rigorously defined diffeomorphism invariant measures and inner
products. The dynamics can be implemented as a unitary transformation and the problem of time
explicitly solved or at least reduced to a numerical problem. We exhibit the technique explicitly in
(2� 1)-dimensional gravity.
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One of the central problems generated by the application
of the rules of quantum mechanics to general relativity is
the problem of the dynamics. When formulated canoni-
cally, general relativity has a vanishing Hamiltonian, which
has to be implemented as a constraint. In the quantum
geometry approach based on loop quantum gravity [1]
the constraint has been implemented [2], but to character-
ize the resulting theory in a way in which the dynamics of
general relativity is explicit remains a challenge. We have
recently introduced a discrete approach to general relativ-
ity [3,4] in which one approximates the continuum theory
by a discrete theory that is constraint free. This allows to
make explicit progress in the problem of the dynamics [5].
One can formulate the quantum theory in such a way that
one chooses a physical variable as a clock and describes the
physics relationally in terms of conditional probabilities
[6]. The approach however appears radically different from
usual loop quantum gravity, and does not seem to incor-
porate, due to the discreteness, many of the attractive
mathematical structures that have been developed in loop
quantum gravity. In particular the characterization of states
in terms of knot invariants and the existence of a rigorous
mathematical arena to describe the theory.

In this Letter we would like to bridge the gap between
these two approaches. We will analyze the consequences of
applying our consistent discretization technique to general
relativity in the timelike direction, while keeping the spa-
tial slices continuous. The resulting canonical theory has
discrete time evolution and is free of constraints, as is
usually the case in consistent discretizations. The discrete
theory has more degrees of freedom than the continuum
theory in the sense that many distinct discrete solutions can
approximate the same continuum solution. One can how-
ever further restrict the dynamics of the theory by imposing
the diffeomorphism constraint of the usual continuum
theory. This is clearly a desirable restriction in the dynam-
ics, since one expects the diffeomorphism constraint to
hold in the continuum theory. Remarkably, the generator
05=94(10)=101302(4)$23.00 10130
of diffeomorphisms of the continuum theory is preserved
by the discrete evolution. This, in fact, is the key observa-
tion of this Letter. If one starts from a formulation of
general relativity based on Ashtekar’s variables and per-
forms this construction, one would have a theory that could
be quantized using the usual tools of loop quantum gravity.
In particular the states will be functions of spin networks
that are annihilated by the diffeomorphism constraint and
one can introduce the Ashtekar-Isham-Lewandowski mea-
sure and theory of integration. The usual well-defined
quantum operators like the area and the volume will exist
and be well defined, except that in the discrete theory the
total volume of the slice will be an observable since there
are no further constraints. The resulting theory could be
used as a basis to construct a relational quantization à la
Page–Wootters [7] and introduce a physical clock that
defines evolution through relational probabilities. One
therefore has a mathematically well-defined arena in which
to complete the quantization of general relativity through a
well-defined procedure that can be carried out entirely, the
only challenge left for completing the construction of the
quantum theory being of computational nature. Of course,
there is still the issue of whether the resulting theory will
have a correct semiclassical limit.

It may be argued that discretizing the temporal evolution
while keeping space continuous is unnatural. After all,
space and time are supposed to be treated in the same
footing in general relativity. However, it should be noted
that although one starts from a spatially continuous classi-
cal theory, the loop quantization naturally introduces a
discrete structure in space. Therefore the final theory will
end up with both space and time discrete.

Let us illustrate the idea in the case of a (1� 1)-di-
mensional theory in the continuum with an action S �R

dtdxL�q�x�; _q�x�; q0�x�; q00�x�� where to simplify nota-
tion we are considering only one variable and use the
primes to denote derivatives with respect to the spatial
coordinate. One then discretizes time and the action be-
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comes S �
P

nL�n; n � 1� where L�n; n � 1� is obtained
from the Lagrangian, replacing the time derivatives by _q �
�qn�1 � qn�=
. We assume the action has the form of a first
order theory with constraints,

L�n; n� 1� �
Z

dx�n�x��qn�1�x� � qn�x��

� 

Z

dxH�qn�x�; �n�x��

�
Z

dxNn�x���qn�x�; �n�x��; (1)

where we have assumed that the theory may have a
Hamiltonian H (in the case of general relativity H vanishes
and the theory loses all information about the discretization
step 
) and constraint(s) ��qn�x�; �n�x��. To simplify no-
tation we are not making explicit the dependence of the
Hamiltonian and the constraints on spatial derivatives of
the fields, but this is allowed in our approach. One now
introduces the canonically conjugate variables,

Pn�1�y��
�L�n;n�1�

�qn�1�y�
��n�y�;

P�
n�1�y��

�L�n;n�1�

��n�1�y�
�0; PN

n�1�y��
�L�n;n�1�

�Nn�1�y�
�0;

(2)

Pn�y� � �
�L�n; n � 1�

�qn�y�

� �n�y� �
�

�qn�y�

�


Z

dxH�qn�x�; �n�x��

�
Z

dxNn�x���qn�x�; �n�x��
�
; (3)

P�
n �y� � �

�L�n; n � 1�

��n�y�

� ��qn�1�y� � qn�y���
�

��n�y�

�

�


Z

dxH�qn�x�; �n�x��

�
Z

dxNn�x���qn�x�; �n�x��
�
; (4)

PN
n �y� �

�L�n; n � 1�

�Nn�y�
� ��qn�y�; �n�y��: (5)

One now can eliminate the variable � and its canonical
momentum P� and end up with a theory entirely given in
terms of q and its canonically conjugate momentum P. The
theory is constraint free since Eq. (5) now becomes
��qn�x�; Pn�1�x�� � 0 and therefore it is not a constraint,
in the sense that it does not constrain variables at the same
time level. If one now substitutes Pn�1�x� making use of
(3) one gets a differential equation that determines the
Lagrange multiplier Nn�x�. That is, we have a theory that
is constraint free at the expense of determining the
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Lagrange multipliers, as is usually the case in the consis-
tent discretization approach. The resulting theory has more
degrees of freedom than the continuum theory it attempts
to approximate. This is due to the fact that a single solution
of the continuum theory can be approximated by several,
different, solutions to the discrete theory. We will now turn
our attention to the specific case of general relativity and
proceed to reduce the extra number of degrees of freedom
by choosing a sector of solutions of the discrete theory that
is preserved upon evolution. The sector is chosen by re-
quiring that the usual diffeomorphism constraint of general
relativity be satisfied. It might appear surprising at first that
the requirement that the constraint be satisfied is preserved
by the discrete evolution.

In order to see this, let us consider the action for general
relativity written in terms of Ashtekar’s variables [8],

S �
Z

dtd3x
�
~Pa
i F

i
0a � NaCa � NC

�
(6)

where N;Na are Lagrange multipliers, ~Pa
i are densitized

triads, and the diffeomorphism and Hamiltonian con-

straints are given by, Ca � ~Pa
i F

i
ab, C �

~Pa
i
~Pb
j�����

det
p

q

�

ijkFi

ab �

�1� �2�Ki

aK

j
b�

�
where �Ki

a � 
i
a � Ai

a and 
i
a is the spin

connection compatible with the triad, and q is the three
metric. We now proceed to discretize time. The action now
reads,

S �
Z

dtd3x
�
Tr
�
~Pa�Aa�x� � V�x�An�1;a�x�V�1�x�

� @a
V�x��V�1�x��
�
� NaCa � NC

��
�������
det

p
qTr�V�x�Vy�x� � 1�

�
(7)

In the above expression V�x� � VITI is the parallel trans-
port matrix along a timelike direction and F0a is approxi-
mated by the holonomy along a plaquette that is finite in
the ‘‘timelike’’ direction and infinitesimal in the ‘‘space-
like’’ direction and T0 � 1=

���
2

p
and Ta � �i"a=���

2
p

; a � 1 . . . 3 and "’s are the Pauli matrices and the
coefficients VI are real. We have omitted the subscript n
to simplify the notation and kept it in the quantities that are
evaluated at n� 1. The last term involves a Lagrange
multiplier � and is present in order to enforce the fact
that the parallel transport matrices are unitary. We notice
that the SU�2� gauge invariance is preserved in the semi-
discrete theory. This in turn implies that Gauss’ law for the
momentum canonically conjugate to the connection,
~Ea
n�1 � V�1 ~PaV is preserved automatically upon evolu-

tion. We do not work this out explicitly here for reasons of
space, the reader can refer to the example of BF theory [9]
we present later in this Letter to see how the conservation
works in detail; the mechanism is similar to the one in
general relativity.
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We now consider a spatial (time independent) infinitesi-
mal transformation x0a � xa � va�x�. It is immediate to
see that the action is invariant. All variables transform as
they do in the continuum action, and V�x� transforms as a
scalar. The only question could be the first term, but since
the transformation is time independent the terms at n � 1
and n transform appropriately. Applying Noether’s theo-
rem, there is a resulting conserved quantity that can be
readily computed using the Lagrange equations, and the
resulting quantity is Ca � ~Eb

i F
i
ab that is, the diffeomor-

phism constraint of the continuum theory. We have
checked the conservation explicitly.

Let us outline how would one complete the quantization.
The central element is to implement the canonical trans-
formation that evolves the variables from n to n� 1 as a
unitary operator. Quantum states will be functions of the
connection �
A� that are invariant under diffeomorphisms
and gauge transformations. For example, one could con-
sider cylindrical functions based on spin networks. We
need to construct the unitary operator �n�1
A

0� �R
DAU�A0; A��n
A�. Since the canonical transformation

that implements the evolution is generated by the
Lagrangian, the unitary operator in the configuration basis
is given by the exponential of the Lagrangian [4,10]
viewed as function of An and An�1. In practice to compute
the Lagrangian as a function of these variables one needs to
solve the equations of motion between n and n � 1. In
situations of interest this could be achieved numerically,
for instance, or through other approximation schemes. To
make the calculation feasible numerically, one will have to
choose to work in a subspace of states to make computa-
tions finite. The calculations in situations of great general-
ity will be hard, but the point to emphasize here is that there
is no conceptual obstacle to carrying them out. In other
words, what we have here is a concrete proposal for doing
numerical quantum gravity.

A point to be noted is that the calculation of the unitary
evolution operator can be carried out in a context that is not
diffeomorphism invariant. Given that the canonical trans-
formation preserves the diffeomorphism generator, one has
for the unitary operator that V�U�A0; A�Vy

� � U��A0; �A�
where V� is the generator of a finite diffeomorphism �. If
one starts from wave functions that are invariant under
diffeomorphisms, i.e., V��
A� � �
A�, then one has
that U�A0; A� has to satisfy,

�n�1
A
0� �

Z
DAU
A0; A��n
A�

�
Z

DAU
A0; A�V��n
A�

�
Z

DAU
A0; ��1A��n
A�

�
Z

DAU
�A0; A��n
A� (8)

and therefore �n�1
A0� � �n�1
�A0�; the integrals can be
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rigorously defined using the Ashtekar–Lewandowski inte-
gration theory developed on cylindrical functions and their
Cauchy completions [1].

Therefore the evolution yields a diffeomorphism invari-
ant state. A similar comment applies to the invariance
under Gauss’ law (gauge invariance). Once one has the
explicit evolution of the wave functions, then one can
choose a physical time from among the variables of the
problem and construct a relational quantum theory as out-
lined in [5,6]. It is clear that carrying out the proposal in
detail in situations of interest with local degrees of freedom
will require significant computational effort, even in sim-
plified examples like the Gowdy cosmologies. To present a
concrete illustration of the technique in a nontrivial setting
that allows to implement things in detail we will discuss
(2� 1)-dimensional SU�2� BF theory and see that the
approach yields the correct expected results. This is of
some interest since this theory is equivalent to Euclidean
general relativity in (2� 1) dimensions.

We start with the standard action for BF theory S �R
d3xTr�B ^ F� and we discretize the ‘‘temporal’’ direc-

tion (we label the ‘‘spatial’’ directions 1,2 and the temporal
one 0), S �

P
n

R
d2xL�n; n � 1� with,

L�n; n� 1� � TrfB0�x�F12�x� � B1�x��A2�x�

� V�x�An�1;2�x�V�1�x� � @2
V�x��V�1�x��

� B2�x��V�x�An�1;1�x�V�1�x�

� V�x�@1V�1�x� � A1�x��

���V�x�Vy�x� � 1�g; (9)

and we are using the same notation as in the general
relativity case. In two of the three terms in the action we
have approximated the curvature by a holonomy along a
plaquette that is finite in the timelike direction and infini-
tesimal in the spacelike direction. As before, the SU�2�
gauge invariance is preserved in the semidiscrete theory.
Notice that the unitary transformation is well defined, and
is free from factor-ordering ambiguities (since the evolu-
tion equations the transformation implements, for this
simple model, are free from operator products). Recall
that B0 and V�x� are c numbers, since they are Lagrange
multipliers and their canonical momenta vanish (i.e., the
states are independent of these variables).

We now build the canonical theory as is usually done in
consistent discretizations by defining the canonical conju-
gate momenta. All of them vanish except the conjugates to
the components 1,2 of the connection, which we sugges-
tively call E1;2 and are given by, Ei�x�n�1 �
V�1�x�BiV�x�; i � 1; 2, and Bi � 
ijBj.

The definition of the canonical momenta to the Bi
n’s

yields evolution equations for the Ai’s,

PB1
� 0 � A2�x� � VAn�1;2�x�V�1�x� � @2�V�x��V�x��1;

(10)
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PB2
� 0

� �A1�x� � VAn�1;1�x�V
�1�x� � @1�V�x��V�x�

�1:

(11)

The momentum of B0 vanishes and yields as evolution
equation the constraint F12 � 0 and the momentum of V,
called PV

n�1 also vanishes and this yields Gauss’ law
PV

nVn � Dn�1;aE
a
n�1 � 0. The constraint implies that the

connection is pure gauge and the evolution equations for
the connection guarantee that if one starts from a connec-
tion that is pure gauge it evolves into a pure gauge con-
nection. We are omitting other evolution equations (like
the ones for the momenta) for reasons of space.

We can outline the quantization. We choose a connec-
tion representation in which A is multiplicative and E is a
functional derivative and they have canonical commutation
relations. The evolution equations become operatorial
equations among operators in a Heisenberg-like represen-
tation where the role of the ordinary time would be played
by the variable n. If one wishes to construct the unitary
transformation that would implement the dynamics in the
quantum theory, one proceeds in the following way. One
computes the expectation value of the equations of motion
between eigenstates of the operator A at instants n � 1 and
n. This allows to infer, by solving the resulting functional
equations that the value of U�A0; A� �

D
A0; n� 1jA; n

E
,

U�A0; A� � ��A0
1 � V�1A1V � @1�V

�1�V���A0
2

� V�1A2V � @2�V�1�V� exp
�
Tr

Z
B0F

�
;

(12)

and this expression satisfies Eq. (10).
Since one has constraints [11], one needs to impose them

on the space of states, and this corresponds to the usual
space of states of BF theory as discussed by Ooguri and
more recently by Noui and Perez [12], namely, the states
are given by ��F12�. As usual for BF theories, the con-
straints imply that the theory is spatially diffeomorphism
invariant. Notice that the unitary transformation (12) de-
pends on two free functions, V and B0. However, on the
physical space these functions can be freely chosen with-
out affecting the evolution. The action of the unitary trans-
formation on a state ��F12�A�� just gives back ��F12�A

0��
with A and A0 related by a gauge transformation with
parameter V�x�.

Summarizing, we have observed that one can introduce
the ‘‘consistent discretization’’ technique in general rela-
tivity and other constrained theories in which one keeps
spatial slices continuous and discretizes time. The resulting
semidiscrete theory has constraints that can be solved by
going to the loop representation, and therefore can be
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explicitly handled without conceptual problems, but one
can consistently impose on its space of states the diffeo-
morphism constraint as a further restriction. One ends up
with a theory that has as physical space the usual diffeo-
morphism invariant kinematical structure of loop quantum
gravity and one can take advantage of the various mathe-
matical developments and physical results of that arena.

The idea that we consider continuous space and discrete
time within the consistent approach was suggested to us by
Lee Smolin. This work was supported in part by Grant
No. NSF-PHY0244335, and by funds of the Horace C.
Hearne Jr. Institute for Theoretical Physics.
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