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Integration of Langevin Equations with Multiplicative Noise and the Viability of Field Theories
for Absorbing Phase Transitions
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Efficient and accurate integration of stochastic (partial) differential equations with multiplicative noise
can be obtained through a split-step scheme, which separates the integration of the deterministic part from
that of the stochastic part, the latter being performed by sampling exactly the solution of the associated
Fokker-Planck equation. We demonstrate the computational power of this method by applying it to the
most absorbing phase transitions for which Langevin equations have been proposed. This provides precise
estimates of the associated scaling exponents, clarifying the classification of these nonequilibrium
problems, and confirms or refutes some existing theories.
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Stochastic differential equations are ubiquitous in the
description of phenomena in the natural sciences and be-
yond [1]. The coarse graining of fast degrees of freedom
often leads to effective Langevin equations where the noise
term involves the mesoscopic variables of interest in a
multiplicative fashion. Examples range from nonlinear
quantum optics, synchronization of oscillators, or wetting
phenomena to theoretical population dynamics studies and
autocatalytic chemical reactions [1–3].

An important case in nonequilibrium statistical physics
is the stochastic partial differential equation governing a
single, positive, concentration field � � ��r; t�:

@t��r; t� � Dr2�� a�� b�2 � �
����
�

p
	�r; t�; (1)

where 	 is a Gaussian (zero-mean) white noise [that is,
with correlations h	�r; t�	�r0; t0�i � 
�r� r0�
�t� t0�].
For instance, for the reaction-diffusion process A! 2A,
2A! 0, Eq. (1) can be obtained in a variety of ways, either
from phenomenological considerations or through more
rigorous transformations [4]. Also named ‘‘Reggeon field
theory’’ for historical reasons, Eq. (1) describes the most
prominent class of absorbing phase transitions (APT), the
directed percolation (DP) class [3]. Indeed, interpreted in
the Itô (prepoint) sense, the unique, homogeneous � � 0
solution does not evolve: it is an absorbing state. Although
a wealth of models have been found to exhibit a DP
transition, this class does not encompass all possible cases,
and the classification of APTs is currently a very active
field [3,5]. Not only is such an endeavor of importance for
conceptual reasons, but it should also yield a better under-
standing of the key ingredients which have impeded so far
clear-cut experimental realizations of even the DP
transition.

Following this line of thought, stochastic equations
similar to (1) have been proposed as candidate field theo-
ries for related problems (see below). Their analyses are
notoriously difficult, and mostly rely on the perturbative
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renormalization group machinery in the vicinity of the
corresponding upper critical dimension, one of the few
exceptions being a recent nonperturbative treatment of
Eq. (1) in [6]. Given this analytical bottleneck, it is tempt-
ing, with ever-improving numerical resources, to directly
integrate such stochastic equations in order to check
whether they at least exhibit the universal properties they
are supposed to represent. However, standard schemes
immediately run into severe difficulties. For instance,
even for the zero-dimensional version of Eq. (1), a first-
order explicit Euler method, viz. ��t� �t� � ��t� �
�t�a��t� � b�2�t�
 � �

��������������
�t��t�

p
N�0; 1�, where N�0; 1� is

a normal random variate, will ineluctably produce unphys-
ical negative values for ��t��t�, and all the more so when
�! 0, the regime of interest for the APT. Another route,
which would first trade the square-root noise for a less
singular one through some change of variables (e.g., �!
 2, or a Cole-Hopf transformation �! e�2�), is also
numerically unbearable since it generates pathological
deterministic terms as the original variable �! 0. Faced
with this problem in the same context, Dickman proposed
[7], somewhat ironically, to also discretize �, yielding a
scheme consistent with the order O�

������
�t

p
� in the limit �t!

0. This approach has been used with some success [7–9],
but one can legitimately wonder to what extent one is truly
simulating the original, continuous equation. In this re-
spect, that the associated results are affected by the same
long transients as those observed in microscopic models is
also worrisome.

In this Letter, elaborating upon a method pioneered by
Pechenik and Levine in the somewhat distant context of
front selection mechanisms in microscopic reaction-
diffusion models [10], we overcome the above hurdles.
We first demonstrate the power of this approach on
Eq. (1) before applying it to most related APTs for which
a Langevin equation has been proposed, including the voter
critical point with its two symmetric absorbing states
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FIG. 1 (color online). Density decay h�i � h��r; t�ir � t� at
criticality for Eq. (1) in d � 1. Lower curve: using our scheme
(�t � 0:25, �x � 1, a � ac � 1:756 23�2�, b � 1, D � 0:25,
�2 � 2, single run for a system of 222 sites with � � 1 every-
where initially); a least-squares fit gives  � 0:1595�2�. Upper
curve: using Dickman’s method (similar conditions, but �t �
10�3). Inset: Plateau of the local exponent.
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[11,12]. Our results are particularly worthy in the context
of the current debate about APTs occurring when � is
coupled to an auxiliary field  : when  is static and
conserved (Manna sandpile model, conserved-DP, or fixed
energy sandpiles class) [9,13–17], we obtain the best nu-
merical estimates for the critical indices. When  is con-
served but diffuses [18–24], our results suggest that, at
least in low spatial dimensions, the Langevin equations
postulated or derived (approximately) as candidate field
theories are not viable.

The idea underlying the approach of [10] (of which we
became aware upon completion of this Letter) is a general
and rather natural one, since it consists in integrating the
fast degrees of freedom. An Itô stochastic differential
equation of the form d�

dt � f��� � �g���	�t� is dealt
with by the so-called operator-splitting scheme: the sto-
chastic part �g���	�t� is integrated first, not by using a
Gaussian random number, but by directly sampling the
time-dependent solution of the associated Fokker-Planck
equation (FPE). Namely, one generates a random number
�� distributed according to the conditional transition
probability density function (pdf) Probf��t��t� �
��j��t� � �0g, and then uses �� for evolving the determi-
nistic part f��� with any standard numerical method for
ordinary differential equations. Since the integration of the
stochastic part is accomplished through the exact solution
of the FPE, which is first order in time, the overall preci-
sion of the scheme, O��t�, is already significantly superior
to that of a naive Euler method [anyhow flawed for Eq. (1)]
or to Dickman’s approach.

Now, for the square-root noise case, i.e., g��� �
����
�

p
, the

closed form solution P��; t� � Probf��t� � �j��0� � �0g

of the associated FPE @tP��; t� �
�2

2 @
2
���P��; t�
 has been

known in the mathematical literature for more than half a
century [25] (see also [10]):

P��; t� � 
���e�2�0=�2t �
2e��2��0���
=�2t

�2t

������
�0

�

s
I1

�
4

���������
�0�

p

�2t

�

(2)

(I1 is the modified Bessel function of the first kind of order
1). When, further, the deterministic part is linear, i.e.,
f��� � �� ��, with �> 0, the exact conditional transi-
tion pdf of the full equation d�

dt � �� ��� �
����
�

p
	 has

also been determined [25]:

P��; t� � �e����0e�t���
�

�

�0e�t

�
�=2
I��2�

���������������
�0�e

�t
q

� (3)

(I� being a Bessel function of order�), where, to condense
notations, we have set � � 2�

�2�e�t�1�
and � � �1� 2�

�2 .

The scheme we have used to integrate Eq. (1) and its
siblings relies on the latter results. After discretizing the
Laplacian r2� over the 2d nearest neighbors r� ev of site
r on a d-dimensional hypercubic lattice of mesh size �x,
we first sample, between t and t� �t, the solution of the
10060
FPE associated with each local linear equation d�
dt � ��

��� �
����
�

p
	 using Eq. (6) with � � a� 2dD

��x�2
and

� � ��r; t� �
D

��x�2
X2d
v�1

��r� ev; t�: (4)

The value �� coming from the stochastic sampling step is,
by construction, automatically non-negative, and serves as
the initial condition for the remaining part of Eq. (1), i.e.,
@t��r; t� � �b�2�r; t�, which can be trivially integrated to
yield ��r; t� �t� � ��

1���b�t . Given that b > 0, the non-
negativity of ��r; t� will be preserved at all times if, ini-
tially, ��r� � 0 everywhere, since � given by Eq. (4) will
also be non-negative and Eq. (6) can be used.

It remains to sample the above pdf, Eq. (2) or Eq. (3).
Instead of using a table method, as the authors of [10], we
note that, with the help of the Taylor-series expansion of
the Bessel function, Eq. (3) can be rewritten as

P��; t� �
X1
n�0

���0e�t�ne���0e�t

n!
�e�������n��

��n��� 1�
: (5)

In other words, one has the following mixture [26]:

�� � Gamma��� 1� Poisson���0e
�t

=�; (6)

where ProbfPoisson���0e�t
 � ng � ���0e�t�ne���0e
�t

n! and
ProbfGamma�!
 � vg � e�vv!�1

��!� . This procedure recon-
stitutes, on average, all the terms of Eq. (5) with their
correct probability, and gives us—since standard and uni-
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formly fast generators of Poisson and Gamma random
numbers are available—a means of sampling in a ‘‘nu-
merically exact’’ way these pdfs [27].

Typical results for Eq. (1) in one dimension are shown in
Fig. 1, along with data obtained using Dickman’s method.
Except for the (weak) linear stability requirement coming
from the discretized Laplacian, there is no limitation on �t
with the former method, so that the computational gain is
of several orders of magnitude, together with an unusually
clean algebraic decay of h�i, with an exponent  �
0:1595�2� matching to the fourth decimal the series-
expansion result [3,5]. In fact, even if �t � 0:25 for this
run, the threshold a � ac��t� is within 1% off its extrapo-
lated limit value as �t! 0, suggesting that the continuous
limit of Eq. (1) is already resolved. One of the reasons for
the particular efficiency of this scheme even with such a
large time step is that it automatically takes into account,
and in a self-adaptive fashion through the locally varying
value of � [Eq. (4)], the strongly non-Gaussian modifica-
tions undergone by the instantaneous, conditional pdf,
Eq. (2) or Eq. (3), as one gets closer and closer to the
absorbing barrier.

We now present some of our most salient results ob-
tained for Langevin equations similar to (1), deferring a
more detailed account of our investigations to [28].

DP coupled to a nonconserved, nondiffusing field.—To
account for reaction-diffusion processes such as 2A! 3A,
2A! A where single particles do not move (such as the
prototypical pair-contact process [29]) and which thus
possess infinitely many absorbing states, it has been pro-
posed that Eq. (1) be supplemented by the non-Markovian
term c exp��w

R
t
0 ds��r; s�
 to account for the memory

effect introduced by immobile particles [30]. The impact
of this term is however unclear, with early simulations [8]
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FIG. 2 (color online). (a) Survival probability of an initial seed
at r � 0 evolving under Eq. (1) with the extra term
c exp��w

R
t
0 ds��r; s�
. Same parameters as in Fig. 1 and vari-

ous c values (about 107 trials). (b) Same as Fig. 1 but for
Eqs. (7). Lower curve: with our scheme (�t � 0:1, �x � 1, a �
ac � 0:864 55�5�, b � ! � 1, D � D� � 0:25, �2 � 2, � �

� � 1 everywhere initially); A least-squares fit gives  �
0:124�1�. Upper curve: with Dickman’s method (�t � 0:0025).
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using Dickman’s method suggesting that continuously
varying spreading exponents arise, in agreement with re-
sults obtained on microscopic models [29], but in contra-
diction with the study of infinite-memory spreading
processes [31], which support stretched-exponential be-
havior. Simulations with our scheme, in one dimension,
reveal power-laws for small jcj, but curvature appears at
late times for large, negative c values [Fig. 2(a)]. To be
fully conclusive, these results will have to be improved by
using enrichment methods enabling to explore rare events,
but they already indicate that the conclusions of [31]
probably hold asymptotically. We finally mention that in
two dimensions (and for c > 0, b � 0) we obtain dynami-
cal percolation spreading exponents as predicted by the
standard theory [30].

DP coupled to a conserved, nondiffusing field.—
Reaction processes, such as A� B! 2A, A! B where
A particles diffuse and B are static, are similar to the case
above, but the number of particles is (locally) conserved
[14]. This conservation law leads to couple � to a con-
served field � in the following system [15,16]:

@t� � Dr2�� a�� b�2 �!��� �
����
�

p
	�r; t�;

@t� � D�r
2�:

(7)

Microscopic models leading to (7) also include so-called
fixed energy sandpiles such as the Manna model, establish-
ing a link between APTs and self-organized criticality [16].
The conservation law influences even the static exponents,
but definite estimates are currently not available (see [9]
and references therein). Data from microscopic models, as
well as simulations of (7) using Dickman’s method, are
plagued by long transients or corrections to scaling. Our
scheme leads, again, to clean power laws which provide us
with the best estimates for the scaling exponents of this
class of APT. In Fig. 2(b), we show a typical result for
critical decay in d � 1, leading to  � 0:125�2�, unambig-
uously distinct from the DP value 0.1595(1). Critical decay
exponents obtained in higher dimensions,  2d � 0:509�5�
and  3d � 0:81�1� [28], also differ significantly from their
DP counterparts.

DP coupled to a conserved, diffusing field.—If, for the
reaction processes above, both species are diffusing, the
situation changes again, if only because one has now a
single, dynamic absorbing state (where B particles diffuse
in the absence of As). This case was studied both analyti-
cally [18–21,23] and numerically [22,24] with continuous
APT predicted and observed for 0<D� � D, but with
conflicting estimates of scaling exponents [23,24]. The
corresponding Langevin equation is usually cast [20,21]
as Eqs. (7) complemented by the self-diffusion of the
auxiliary field and a conserved noise term. Performing
with our scheme critical decay experiments in spatial
dimensions d � 1; 2, we find the exponent  to be undis-
tinguishable from the DP values. Because this differs from
1-3
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FIG. 3 (color online). Voter coarsening process for a continu-
ous field evolving under Eq. (8) (�x � 1, �t � 0:25, D � 1,
�2 � 0:5, zero-mean random initial conditions). Left: snapshot
of � at t � 2500 (5122 sites). Right: decay of interface density
(40962 sites) �I � 1� h��r; t���r� ev; t�i / 1= lnt.
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both analytical predictions [18,19,23] and estimates from
microscopic models [24], this indicates that the truncation
of the full action of the field theory needed to arrive at the
corresponding Langevin equations is not legitimate.

The voter critical point.—The universality class of the
voter model is characterized by two symmetric absorbing
states [12]. The following field theory has been pro-
posed—but never tested—to describe its critical point
[11,21]:

@t� � Dr2�� �
���������������
1� �2

q
	�r; t�: (8)

The FPE associated with the sole stochastic part can be
solved through an eigenfunction expansion, leading to a
complicated expression for the conditional transition pdf,
involving a continuous part and two delta peaks at the
barriers � � �1 [10,28]. Although this distribution can
be sampled [28], it is both much simpler and more efficient

to replace in the noise term the piece
���������������
1� �2

p
by ������������������

1� �
p

� ��$ ���, thereby taking into account just the
closest DP barrier. This way our scheme can be applied,
and one observes in two dimensions phase ordering pat-
terns typical of the marginal voter coarsening process and,
for the first time with continuous variables, the expected
1= lnt decay of the density of interfaces (Fig. 3).

This completes our (not exhaustive) inspection of
Langevin equations proposed as field theories of absorbing
phase transitions. Pending more comprehensive studies
(higher dimensions, other scaling exponents), the results
already obtained demonstrate that the method presented
above enables faithful and efficient simulations of such
stochastic equations. This approach will remain particu-
larly useful as long as no major analytical progress is made
and also for testing future theoretical predictions.
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Hinrichsen, Phys. Rev. E 68, 036103 (2003).


