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Exact Ground State and Finite-Size Scaling in a Supersymmetric Lattice Model
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We study a model of strongly correlated fermions in one dimension with extended N � 2 supersym-
metry. The model is related to the spin S � 1=2 XXZ Heisenberg chain at anisotropy � � �1=2 with a
real magnetic field on the boundary. We exploit the combinatorial properties of the ground state to
determine its exact wave function on finite lattices with up to 30 sites. We compute several correlation
functions of the fermionic and spin fields. We discuss the continuum limit by constructing lattice
observables with well defined finite-size scaling behavior. For the fermionic model with periodic
boundary conditions we give the emptiness formation probability in closed form.
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Supersymmetry is well motivated in high energy physics
where it offers a partial solution to fine-tuning problems
and improves gauge coupling unification. It also appears in
condensed matter models although at a less fundamental
level. Examples are disordered systems [1] and models of
strongly correlated electrons like extended Hubbard [2] or
t-J models [3] where supersymmetry relates fermionic and
bosonic composite operators.

A typical consequence of unbroken supersymmetry is
the prediction of the ground state energy. This is not
sufficient to compute the ground state wave function, the
relevant quantity for the calculation of vacuum expectation
values. It is quite natural to ask whether supersymmetry
and the knowledge of the ground state energy are useful for
this purpose.

In this Letter, we analyze the problem in a recently
proposed one dimensional model of itinerant fermions
[4] with two supercharges obeying with the Hamiltonian
an extended N � 2 supersymmetry algebra. The knowl-
edge of the ground state on large finite lattices is important
to study its continuum limit where the model is expected to
describe a minimal superconformal series.

We are interested in boundary effects and thus consider
mainly free boundary conditions; see Ref. [4] for the
periodic case. The model can be mapped to the integrable
open XXZ Heisenberg spin 1=2 chain with anisotropy � �
�1=2 and a suitable real surface magnetic field (see
Ref. [5], Sec. 2.1). In principle, Bethe ansatz techniques
could be applied. The supersymmetry inherited from the
fermionic model should allow us to compute the Baxter
function whose zeros give the Bethe quantum numbers [6].
However, the procedure is rather involved with open
boundary conditions as discussed in Ref. [7].

Here, we pursue a different approach starting with the
following remarks. The XXZ chain at � � �1=2 is inte-
grable for a large class of boundary conditions. In some
specific cases [e.g., twisted or Uq�sl�2�� symmetric ones]
several remarkable conjectures have been claimed about
the combinatorial properties of the ground state wave
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function [8,9]. They arise from the relation between the
XXZ chain and Temperley-Lieb loop models [10].

In this Letter, we first show that similar features are
present in the fermionic model and in the related XXZ
chain with surface magnetic field. We then explain how
number theoretical methods can be used to obtain exact
expressions for the ground state wave function of the
fermionic model on long chains. Finally, we analyze in
some detail the physical properties and finite-size scaling
(FSS) behavior of the ground state. In particular, we dis-
cuss the continuum limit and propose a way to extract
scaling fields from the fermionic model and the associated
XXZ Heisenberg chain.

The model [4] is defined on a one dimensional lattice
with L sites and free boundary conditions. Let ci; c

y
i be

spinless fermionic creation annihilation operators with
algebra fci; c

y
j g � �ij, fci; cjg � fcyi ; c

y
j g � 0. We denote

by Ni the set of nearest neighbors of site i. The projector
over states with a hard-core condition forbidding occu-
pancy around site i is P i �

Q
j2Ni

�1� nj�, with nj �

cyj cj. Let Q	 be the supersymmetry charge Q	 �P
ic

y
i P i and Q� � �Q	�y. The operators Q
 are nilpotent.

The Hamiltonian

H � fQ	; Q�g �
X
i

X
j2Ni

P ic
y
i cjP j 	

X
i

P i (1)

is by construction Q
 symmetric. We restrict ourselves on
the subspace H L;F of states with F fermions and no
adjacent occupied sites which is an invariant subspace of
the full Fock space under the action of Q
. We work in the
basis of simultaneous eigenstates of the number operators
ni. The structure of eigenstates of H follow from super-
symmetry. The energy is non-negative and all energy ei-
genstates with E> 0 are doublets connected by the action
of Q
. The zero energy states are singlets annihilated by
Q
. They are supersymmetric ground states. A cohomo-
logical analysis [4] shows that there is a unique zero energy
state for Lmod3 � 0; 2 and none for Lmod3 � 1. In the
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FIG. 1. Z3 structure of the expectation hnki. The dashed lines
connect branches with the same value of kmod3.
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following we consider the case L � 3n. The unique ground
state has then fermion number F � n. The dimension of
H L;L=3 increases rapidly as L ! 1. It should be clear that
the determination of the unique ground state j�0i is non-
trivial on large lattices.

At low L, the ground state can easily be obtained.
Inspection of the explicit wave functions reveals a remark-
able fact. Indeed, the ground state can always be written in
the very special form

j�0i� j1010���10|������{z������}
2F terms

00���0|���{z���}
F terms

i	
X
s

xsjsi; (2)

where xs 2 Z and s runs over all states (diagonal in the
occupation number basis) with the exception of the single
state explicitly written. Lattice parity halves the number of
independent coefficients. We used it as a consistency
check. The integrality property of fxsg is definitely a non-
trivial ansatz on the ground state wave function, and it
would be elusive in a Bethe ansatz approach. Similar
results already appeared in the literature for the XXZ
Heisenberg model at � � �1=2 [8,9] that is indeed closely
related to the present fermionic model.

Let us assume the integrality property (2) as a working
hypothesis. The equation Hj�0i � 0 reduces to a linear
problem of the special kind

Ax � b; A 2 Zd�d; b 2 Z1�d; (3)

where x is the vector of unknown coefficients xs and d �
dimH L;F � 1. We know that this problem admits an in-
teger solution x 2 Z1�d, and it seems reasonable to be able
to find it exactly with modest effort. This is possible due to
a well-known technique in cryptology. The problem can be
solved by working in the finite field Zp of integers modulo
a prime p. To solve Eq. (3), we choose a large prime p and
first determine a solution modulo p by the Lanczos algo-
rithm over finite fields [11]. We build the sequences
fbig0�i�d and fcig1�i�d where the initial values are

b0 � b; c1 � Ab; b1 � c1 �
c21

b � c1
b; (4)

and the sequences are generated by iterating

ci	1 � Abi; (5)

bi	1 � ci	1 �
c2i	1

bi � ci	1
bi �

ci � ci	1

ci � bi�1
bi�1: (6)

The solution is finally obtained as

x �
Xd�1

i�0

bi � b
bi � ci	1

bi: (7)

In Eqs. (4)–(7), all arithmetic operations, in particular,
divisions, are done in Zp. The above algorithm exploits
the sparsity of A and is not memory expensive since it
requires a storage O�d�. After a certain number of solution
10040
modulo (large) primes fpig have been found, they are
combined together to give the exact solution. This is
done by applying the Chinese remainder theorem [12]. It
is at this point that the assumed integer expansion (2) can
be checked. If it is actually true, the above process termi-
nates after a finite number of steps. By the above proce-
dure, we have determined the exact ground state for
L � 3n � 30 ( dimH 30;10 � 352 716). The complete ex-
pressions (i.e., the sequences fxsg) are available on request.

We now illustrate the main physical properties of the
results. For any observable O we denote hOi �
h�0jOj�0i. Several remarkable combinatorial features
appear immediately leading to conjectures in the spirit
of Ref. [8]. We find that the dominant state in the ground
state is always j�i � j010010010 � � �i with coefficient
maxjxsj � xj�i � N8�2L=3	 2�, where N8�2n� �Qn�1

k�1�3k	 1��2k�!�6k�!=��4k�!�4k	 1�!� is the number
of cyclically symmetric transpose complement plane par-
titions [9]. Also, the squared norm in our normalization is
1	

P
sx

2
s � N8�2L=3	 2�AV�2L=3	 3�, where AV�2n	

1� � 2�nQn
k�1�6k� 2�!�2k� 1�!=��4k� 1�!�4k� 2�!� is

the number of vertically symmetric alternating sign matri-
ces We checked these expressions for all L � 30. Similar
conjectures can be claimed on correlation functions, as in a
recent work [13]. A simple example is the expectation of
the potential energy h

P
iP ii. The operator �1=L�

P
iP i is

diagonal on states jni and is minimum on j�i, where it
attains the value F=L � 1=3. Our data are consistent with
the simple formula

1

L

	X
i

P i



�

1

3

5L	 21

4L	 15
: (8)

The asymptotic value is 5=12, slightly larger than 1=3, due
to the subdominant states jni � j�i appearing in j�0i.
Another example is the fermion density on the boundary
hn1i. We find
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hn1i �
L�10L	 33�

2�4L	 9��4L	 15�
: (9)

The asymptotic value 5=16 is smaller than 1=3, a plausible
fact since the dominant state j�i has no fermions on the
lattice boundary. We now examine the FSS behavior of
simple correlation functions. In Fig. 1 we show the expec-
tation value hnki � 1=3 on the L � 30 lattice. There is a
clear Z3 substructure similar to that observed in the phase
diagram of bosonic models with hard-core repulsion [14].
The average number of fermions in the three branches can
be defined as Fk �

P
i;imod3�khnii. We have F0 � F1 and

F0 	 F1 	 F2 � F. Asymptotically, at large F � L=3, the
upper branch has the asymptotic value F2 �

1
2 �F	 1� 	

O�F�1�. The three sublattices containing sites k with fixed
kmod3 appear to reconstruct smooth curves for hnki as L
increases. The Z3 structure can be exploited to construct
scaling fields in the continuum limit.

Let us define the effective length ~L � L=3	 1 and set
k
 � �L
 1�=2. Our data for hnki suggest to test the
following FSS laws:

hnki � 1=3 � f	��k� k	�= ~L� ~L
�!; kmod3 � 2;

hnk 	 nk	2i � 2=3 � f���k� k��= ~L� ~L
�!0 ;

kmod3 � 1; (10)

where ! and !0 are unknown exponents. The best collapse
of data at different L is obtained with ! � !0 � 0:33�2�
and is shown in Fig. 2. Notice that for kmod3 � 1, the
separate hnki and hnk	2i form a parity doublet. They should
be related in the continuum limit to the left and right
moving parts of a single field. The value of !; !0 is close
to 1=3. In principle, this information is useful in the effort
of identifying the proposed scaling fields with the operator
content of candidate superconformal field theories describ-
ing the continuum limit of the model. The next simple
observable built with local fermionic fields is the density-
density (connected) correlation function Gi;j �
-2.0 -1.0 0.0 1.0 2.0
(k-k

+
)/L

~
 k mod 3 = 2

0.40

0.45

0.50

0.55

0.60

0.65

(<
 n

k >
 -

 1
/3

) 
  L~

1/
3

L = 12
L = 15
L = 18
L = 21
L = 24
L = 27
L = 30

-2.0 -1.0 0.0 1.0 2.0
(k-k-)/L

~
  k mod 3 = 1

-0.60

-0.55

-0.50

-0.45

-0.40

(<
 n

k +
 n

k+
2 >

  -
 2

/3
) 

 L~
1/

3

FIG. 2. FSS of the occupation number hnki.
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hninji � hniihnji. On the left side of Fig. 3 we show the
boundary correlation function G1;k on the L � 30 lattice.
Again the Z3 structure is evident. On the right side, we fit
G1;k on lattices of various sizes with the simple form a0 	
a1=k with good agreement. The term a0 is a small size
effect decreasing with L. A detailed scaling analysis shall
be reported elsewhere.

The fermionic model can be mapped quasilocally to the
XXZ spin chain at anisotropy � � �1=2 with a specific
real surface magnetic field [5]. The structure of Bethe
equations in the two models is closely related, but the
fermionic and spin correlation functions can be quite dif-
ferent. Following Ref. [5], we map a fermionic configura-
tion fng to a well defined spin one f$g with the dichotomic
variable $k � 
1. The map is such that the spin chain has
length 2L=3	 1. The expectation value of the local spin is
shown on the left side of Fig. 4.

The structure is now Z3 ! Z2 and h$ki can be split into
two independent channels with kmod2 � 0; 1.
Equations (8) and (9) give the boundary spin h$1i �
2hn1i � 1 and the numbers of pairs of spins up or down,

hN""i �
L�L� 3�

3�4L	 9�
; hN##i �

L�L	 6�

3�4L	 15�
: (11)

Again, it is possible to separate the two components in
order to build well defined scaling fields. We test

h$ki � g	��k� ~L�= ~L� ~L�&; kmod2 � 0; (12)

h$ki � g���k� ~L�= ~L� ~L�&0

; kmod2 � 1: (13)

The best values of the exponents are & � 0:66�1�, &0 �
0:80�1�. The accuracy of the corresponding FSS laws is
shown on the right side of Fig. 4. Notice that &;&0 are quite
close to the simple rationals 2=3 and 4=5. This suggests
again a possible simple identification of these scaling fields
with superconformal operators.
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FIG. 3. Boundary and bulk pair correlation function at L � 30.
Algebraic decay of the kmod3 � 1 component of the boundary
correlation.
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FIG. 4. (left) Z2 structure; (right) FSS of h$ki.
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We stress at this point that the same methods can be
applied to any model with integrality properties like
Eq. (2). In particular, a suitable version of Eq. (2) holds
in the model (1) with periodic boundary conditions. The
map to a model in the XXZ class is described in this case in
Sec. 3.2 of the second paper in Ref. [4]. To give an example
of the efficacy of our number theoretical techniques in this
context, we have computed the unique supersymmetric
ground state for the model with periodic boundary con-
ditions and L � 3F	 1, up to L � 28. A relevant non-
trivial observable is the emptyness formation probability
Ek � h

Qk
i�1�1� ni�i. The first values are fixed from trans-

lation invariance and the constraint nini	1 � 0 which de-
fines H L;F,

E1 �
2F	 1

3F	 1
; E2 �

F	 1

3F	 1
: (14)

For k > 2 we checked the validity of the relation

Ek � Ek�1
�k� 2�!�3k� 5�!

�2k� 3�!�2k� 4�!

Yk�1

!�3�k

F	 !
2F	 !

: (15)

We guessed the very specific form of Eq. (15) from similar
conjectured relations proposed for the finite XXZ model
with twisted boundary conditions [8]. The thermodynam-
ical limit F ! 1 is

"k � lim
F!1

Ek �
1

24
A�k� 1�2��k�3��k	1�; (16)

where A�n� is the number of alternating sign matrices
A�n� �

Qn�1
k�0�3k	 1�!=�n	 k�! [9]. From Stirling’s ex-

pansion, the asymptotic behavior of this expression is

"k	1 � 2=3c�
���
3

p
=2�3k

2
k�5=36; (17)

where the constant c takes the form [8]
10040
c � exp
Z 1

0

�
5e�t

36
�

sinh�5t=12� sinh�t=12�

sinh2�t=2�

�
dt
t

�
: (18)

To conclude, we have shown that the knowledge of the
ground state j�0i on moderately large finite lattices allows
a precise FSS analysis of correlation functions guiding the
detailed identification of the continuum limit of the model
(1). The exact j�0i is also an effective heuristic tool to
derive closed expressions for correlation functions.

We acknowledge conversations with P. Fendley,
J. De Boer, and V. Rittenberg.
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