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Recombination Dramatically Speeds Up Evolution of Finite Populations
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We study the role of recombination, in the form of bacterial transformation, in speeding up Darwinian
evolution. This is done by adding a new process to a previously studied Markov model of evolution on a
smooth fitness landscape; this new process allows alleles to be exchanged with those in the surrounding
medium. Our results, both numerical and analytic, indicate that, for a wide range of intermediate
population sizes, recombination dramatically speeds up the rate of evolutionary advance.
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Recombination of genetic information is a common
evolutionary strategy, both in natural systems [1] as well
as in vitro molecular breeding [2]. This idea is also em-
ployed in genetic programming [3], a branch of computer
science which aims to evolve efficient algorithms. Given
all this, it is surprising that we still do not have a good
understanding of the conditions under which the benefits of
recombination outweigh the inevitable costs.

Of course, there is a large literature on recombination,
dating back to the ideas of Muller [4] and Kondrashov [5].
One line of recent work focuses on two loci genomes and
considers whether or not recombination would be favored;
possible mechanisms include (weak) negative epistasis (in
which case the reproduction rate is not just the sum of
independent contributions from each individual locus) or
negative linkage disequilibrium (the lack of independence
of the allele distribution in a finite population) or some
combination thereof [6]. Others look at how the (static)
genetic background in which a mutation arises will affect
fixation probabilities (‘‘clonal interference’’), comparing
these with or without recombination [7]. In both of these
methods, only one or two mutations at a time are ‘‘dy-
namic,’’ a situation unlikely to be true for rapidly evolving
microorganisms. In contrast, our analysis considers a large
number of contributing loci.

In this Letter, we study recombination in the context of a
simple fitness landscape model [8–10] which has proven
useful in the analysis of laboratory scale evolution of
viruses and bacteria [11]. The specific type of recombina-
tion we consider is based on the phenomenon of bacterial
transformation [12]. Here, so-called genetically competent
bacteria can import snippets of DNA from the surrounding
medium; presumably these are then homologously recom-
bined so as to replace the corresponding segment in the
genome. This behavior is controlled by a cellular signaling
system that ensures that recombination only occurs under
stress. The details of the DNA importation and the afore-
mentioned control has convinced most biologists [13,14]
that transformation is an important survival strategy for
many bacterial species.
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Our model consists of a population of N individuals,
each of which has a genome of L binary genes, Si � f0; 1g.
An individual’s fitness, x, is the sum of the fitness contri-
butions from each gene, Si, so that x �

PL
i�1 Si. Evolution

is implemented as a continuous time Markov process in
which individuals give birth at rate x and die at random so
as to maintain the fixed population size. Every birth allows
for the daughter individual to mutate each of its alleles with
probability �0 giving an overall genomic probability of
� � �0L.

The last part of our Markov process implements recom-
bination, parameterized by fs, the recombination rate per
unit time per locus. At rate fsL, an individual has one of its
genes deleted and substitutes a new allele from the sur-
rounding medium; the probability of getting a specific S is
just its proportional representation in the population. This
mimics the transformation mechanism as long as the dis-
tribution of recently deceased (and lysed) cells is close to
that of the current population [15]. In Fig. 1(a), we show
simulation results for the ‘‘velocity,’’ v � d �x=dt, i.e., the
rate of increase of the mean fitness (at one representative
point on the landscape), for different order unity values of
fs, as a function of N. At very small population sizes,
recombination has little effect since there is no population
diversity upon which to act. Each of the curves rises
sigmoidally to a saturation value at very large N which is
again roughly independent of the recombination rate [see
Fig. 1(b) and later]. Because the population scale for this
rise is a strongly decreasing function of fs, recombination
at intermediate N can give a dramatic speedup of the
evolution. It is worth mentioning that this basic result is
qualitatively consistent with recent experiments [16] in
microorganism evolution which demonstrate an increase
in the efficacy of recombination as the population size is
increased (starting from small); we should note, however,
that the details of recombination in these experimental
systems are different than those underlying bacterial
transformation.

Can one understand these simulation results? At small
N, we can appeal to previous results for this model [9] that
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FIG. 1 (color online). Velocity (averaged over 200 samples) measured between x � 95 and x � 105 starting with an average fitness
of 50. L � 200, � � 0:1. (a) v measured as a function of population size, N, for various fs. Error bars are shown for one value of fs,
and are typical of all the data. (b) v measured as a function of fs for various N. As N increases, the velocity saturates at an
fs-independent value.
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show that the population variance scales as �N. One would
therefore expect the small N breakpoint where the curves
diverge to be roughly at N � 1=�; this is consistent with
the data in Fig. 1(a) and we have checked this simple
scaling with mutation rate (data not shown). Another small
N effect becomes evident if the simulations are extended to
much larger fs values, as shown in Fig. 1(b). Now, the
velocity begins a slow decline at too large fs due to the
recombination causing a loss of diversity as specific alleles
go to fixation at various loci.
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The behavior at larger N, past the inflection point of the
velocity curves in Fig. 1(a) and in the rising segments of
the curves in Fig. 1(b), is much less trivial. To enable us to
write down an equation for the time derivative of P�x�, the
fitness distribution function, we start by assuming that the
subpopulation at some particular fitness x, of size NP�x�,
has its 0 and 1 alleles uniformly distributed at each site of
the genome. This means, of course, that selecting at ran-
dom an allele at any site gives a chance x=L of getting
S � 1 and 1� x=L of getting S � 0. Then, in the infinite-
population [mean-field (MFE)] limit:
dPx�t�
dt
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FIG. 2 (color online). The probability of making an up-and-
down move due to recombination as a function of individual
fitness when the average fitness of the population was 75. For this
run, N � 1000, L � 100, fs � 1, � � 0:1. The ‘‘naive’’ proba-
bilities are those derived assuming equal distribution of alleles at
every locus.
The first two terms are standard and reflect the birth-death
process and the genomic mutation, respectively; the ex-
plicit form of the mutation term arises from consider-
ing the probability of an individual with fitness x giving
birth (rate �x), mutating (��), and hence going either
up (��1� x=L�, the number of currently bad alleles) or
down (�x=L, the number of good alleles). The last term is
new and reflects the role of recombination. With the afore-
mentioned assumption, the probability that an individual
of fitness x will have its fitness altered is proportional to
the recombination rate, fsL, times the probability of either:
(a) deleting a bad allele (1� x=L) and picking up a good
one ( �x=L) or (b) deleting a good allele (x=L) and picking
up a bad one (1� �x=L).

Before using this equation [and its modification for finite
N effects, see Eq. (4) below] to analyze the numerical
results, we need to test the underlying equi-distribution
assumption. To do this, we generated a population of N �
1000 with �x � 50 and let it evolve using fs � 1 for L �
100. We then measured the respective probabilities for a
recombination event to increase or decrease the fitness,
based on the fitness x of the chosen individual. As shown
in Fig. 2, our theoretical expression has the correct func-
tional dependence, although it overestimates these actual
probabilities by roughly a fixed amount. This overestimate
is due to the fact that individual sites have less diversity
than is predicted, a remnant of the aforementioned loss-of-
diversity effect. Notwithstanding the error (which we find
2-2
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FIG. 3 (color online). Velocity vs average fitness for simula-
tions of the noncutoff MFE [Eq. (1)] for various fs. Parameters
are � � 0:1, L � 1000, initial fitness x0 � 500. The curve for
fs � 1 is taken from Eq. (3).
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decreases as N increases), this comparison gives us con-
fidence that the above equation can account semiquantita-
tively for the recombination process.

In Fig. 3, we show the results of solving the MFE,
Eq. (1), numerically for a variety of fs values. At nonzero
fs, the fitness rapidly approaches a universal trajectory
which is fs independent; only the rate of approach varies.
Hence, the amount of recombination is of minor impor-
tance if N is large enough for this mean-field theory to
apply. We can explain this by noting a binomial fitness
distribution, B�L; �x=L�, is preserved under the action of
recombination for all values of �x. Thus, for large fs, the
system is quickly driven to a binomial distribution charac-
terized by p � �x=L, the mean fitness per locus. This mean
continues to evolve, with a velocity given by

v � Var�x� ��
�
�x�

2

L
� �x2 � Var �x��

�
; (2)

which is easily derived by multiplying Eq. (1) by x and
summing over x. Notice that recombination has no direct
effect in changing the fitness on average. Given the vari-
ance of the binomial distribution, Var �x� � Lp�1� p�,
we find that v grows linearly with L and is thus large:

v � L	p�1� p� ��p�1� 2p�
 � 2�p�1� p�: (3)

The final state is therefore reached in a time essentially
independent of L, even for small �, so this indeed is quite
rapid evolution; this analytic curve is included in Fig. 3.
Now, the fact that recombination attempts to enforce a
binomial distribution but otherwise does not directly
change the rate of evolutionary advance explains why it
has little consequence in the N ! 1 mean-field limit.
Actually this argument is more general. Essentially, the
pure mutation-selection problem will, up to small correc-
tions if L is large, also give rise to a binomial distribution
which therefore self-consistently solves the entire equa-
tion. To see this, we replace the birth rate factors in the
mutational part of the MFE by the constant rate �x; this
introduces an error of O	�x� �x�=L
, which becomes
O�L�1=2� were we to have a binomial distribution. Then,
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we can directly check that the same binomial ansatz solves
the fs � 0 time-dependent MFE. Hence, the only role for
recombination is to cause the system to dynamically select
this particular solution of the mean-field theory; the value
of fs makes no difference once we are past the transient
period.

We have now explained why the large N saturation value
in Fig. 1(a) is roughly fs independent. The remaining issue
concerns the critical value of f
s �N� at which the system
reaches the plateau [see Fig. 1(b)]; the previous argument
suggests that as N ! 1, f
s ! 0�. This value is of crucial
importance, as it represents the amount of recombination
needed for a finite population to achieve the maximal rate
of evolution. Studying this requires inclusion of finite
population effects in the evolution equation, for which
we employ a heuristic cutoff approach which has been
shown to be accurate in a variety of previous investigations
[8,17–19]. In detail, we replace the �x� �x�P�x� term in the
mean-field equation [Eq. (1)] with the alternate form

	x��Px � Pc� � �
Px�t� (4)

leaving the rest of the equation unchanged. Here � is
chosen to satisfy population conservation, � �R
dxxPx��Px � Pc�, and Pc is a cutoff of order 1=N.

Figure 4(a) compares the time evolution of the stochastic
system with that predicted by this cutoff MFE, showing
reasonable agreement. Finally, Fig. 4(b) shows the desired
effect, namely, the fact that the transition point to rapid
evolution is a decreasing function of lnN.

Why does finite N matter in this manner? It is easy to
check that the cutoff term has no consequential effect as
long as the distribution remains binomial. The breakdown
in the previous analysis occurs when N becomes so small
that the variance (and hence the velocity) saturates at lnN
instead of order L. This transition means that the mutation-
selection balance is not consistent with the binomial. We
estimate the critical N by comparing the velocity found
above, Eq. (3), with that expected when finite N effects are
dominant. To estimate the latter, note that the recombina-
tion term in Eq. (1) can be written as the sum of a drift
piece and a diffusion piece

fsL�	VP
0 � 	DP
00�;

where prime refers to the finite difference operator and
Vx � �x� �x�=L, Dx � �x� �x�=2L� �x �x�=L2. The drift
term is small, because x� �x is of order the square root
of the variance, and so is always much less than L; hence,
the most important effect is that of increased diffusion.
This in fact appears to be the secret behind the efficacy of
recombination in this model, namely, that it acts to increase
variation just like an increased mutation rate but without a
mean drift term, aka the ‘‘mutational load.’’ The diffusion
coefficient is finite as long as we are not very near �x � L.
Assuming recombination dominates, we can use the results
of previous analyses of the mutation-selection problem
with fsL substituted for the genomic mutation rate � �x.
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FIG. 4 (color online). (a) Fitness as a function of time averaged over 50 runs, N � 1000, compared to a numerical solution of the
cutoff MFE with cutoff Pc � 1=5000. � � 0:1, fs � 2, L � 50, x0 � 25. (b) Cutoff for which v is 90% of its maximal (cutoff � 0)
value as a function of fs for L � 200, 400. � � 0:001. Velocity measured between x � L=2� 5, with initial x � 5. Dotted line
represent fits to Eq. (5).

PRL 94, 098102 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
11 MARCH 2005
From Ref. [8], the velocity under this assumption scales as

v� �fsL�2=3ln1=3N:

Equating this to our previous result that for large N the
velocity scales as L independent of fs, the predicted value
of N (or equivalently the inverse cutoff) beyond which the
system exhibits mean-field behavior scales as

N
 � exp�CL=f2s � (5)

for some order one constant C. This is consistent with the
data shown in Fig. 4(b) and indeed with the limited direct
simulation data in Fig. 1(b).

At this stage of our understanding, it is impossible to
make any quantitative contact with experimental data.
Nonetheless, conceptual insights that emerge from our
study seem to offer solutions for some of the mysteries
underlying bacterial transformation. Our results show that
in the population range of interest for many microorganism
colonies, there is a huge potential benefit to be gained from
recombination; nevertheless too much recombination can
hurt, as the specific genes are too rapidly driven to the most
common allele even if it is not the beneficial one. This
perhaps explains why recombination is so heavily regu-
lated via intercellular signaling. The mechanism behind
this benefit seems to be the increased rate of effective
diffusion on the landscape, similar to what would happen
with an increased mutation rate except that there is no
significant extra load. Finally, we have already mentioned
that our results are consistent with recent experiments;
these could be extended to check the basic prediction of
our approach regarding the scaling of the needed rate
versus population size [Eq. (5)]. Even more exciting would
be the determination that the signaling system is used for
imposition of this result, measuring the effective popula-
tion by quorum sensing and feeding the information into
the competence pathway.
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