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Inference of a Nonlinear Stochastic Model of the Cardiorespiratory Interaction
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We reconstruct a nonlinear stochastic model of the cardiorespiratory interaction in terms of a set of
polynomial basis functions representing the nonlinear force governing system oscillations. The strength
and direction of coupling and noise intensity are simultaneously inferred from a univariate blood pressure
signal. Our new inference technique does not require extensive global optimization, and it is applicable to
a wide range of complex dynamical systems subject to noise.
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Heart rate variability (HRV) is an important dynamical
phenomenon in physiology. Altered HRV is associated
with cardiovascular diseases and increased mortality [1],
and its parameters are starting to be used for diagnostic
tests. However, signals from the human cardiovascular
system (CVS), being derived from a living organism, arise
through the interaction of many dynamical degrees of
freedom and processes with different time scales [2].
Thus HRV is attributable to the mutual interaction of a
large number of oscillatory processes. Among them, the
effect of respiration on heart rate has been the most in-
tensively studied and a number of physiological mecha-
nisms have been proposed [3], including, e.g., modulation
of the cardiac filling pressure during respiratory move-
ments [4] and baroreceptor feedback control [5].

An important feature of these processes is that they are
nonlinear, time-varying, and subject to fluctuations [6—8].
For such systems, deterministic techniques fail to yield
accurate parameter estimates [9]. Additionally, models of
the cardiovascular interactions are not usually known ex-
actly from first principles and one is faced with a rather
broad range of possible parametric models to consider
[5,10]. Inverse approaches, in which dynamical properties
are analyzed from measured data, have recently been
considered. A variety of numerical techniques have been
introduced to analyze cardiorespiratory interactions using,
e.g., linear approximations [11], estimations of either the
strength of some of the nonlinear terms [12], the occur-
rence of cardiorespiratory synchronization [13], or the
directionality of coupling [14]. Hitherto, modeling ap-
proaches have not been used interactively in conjunction
with time-series analysis methods. Rather, the latter have
each focused on a particular dynamical property, e.g.,
synchronization, or nonlinearities, or directionality.

In this Letter we introduce an approach to the problem
that combines mathematical modeling of system dynamics
and extraction of model parameters directly from measured
time series. In this way we estimate simultaneously the
strength, directionality of coupling, and noise intensity in
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the cardiorespiratory interaction. The technique recon-
structs the nonlinear system dynamics in the presence of
fluctuations. In addition, the method provides optimal
compensation of dynamical noise-induced errors for con-
tinuous systems while avoiding extensive numerical opti-
mization. We demonstrate the approach by using a
univariate blood pressure (BP) signal for reconstruction
of a nonlinear stochastic model of the cardiorespiratory
interaction. The results are verified by analysis of data
synthesized from the inferred model.

The problems faced in the analysis of CVS variability
are common, not only to all living systems, but also to all
complex systems subject to fluctuations, e.g., molecular
motors [15] or coupled matter-radiation systems in astro-
physics [16]. Yet there are no general methods for the
dynamical inference of stochastic nonlinear systems.
Thus the technique introduced in this Letter will be of
wide applicability.

We analyze central venous blood pressure data, record
24 of the MGH/MF Waveform Database available at
www.physionet.org. Its spectrum, shown in Fig. 1(a), ex-
hibits two basic frequencies corresponding to respiratory,
f, = 0.2 Hz, and cardiac, f, = 1.7 Hz, oscillations; the
higher frequency peaks are the second, third, and fourth
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FIG. 1. (a) Power spectrum of the BP data after Butterworth
filtration: low-pass of the fourth order, with a cutoff frequency of
3 Hz, and high-pass of the second order with cutoff frequency of
0.03 Hz. (b) Summary of the main combinatorial frequencies of
the cardiac and respiratory components. Correspondences be-
tween the nonlinear interaction terms of the model (1) and the
observed frequencies are shown by arrows.
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harmonics of the cardiac oscillation. We note that the
relative intensity and position of these peaks vary from
subject to subject, with the average frequencies for healthy
subjects at rest being around 0.2 and 1.1 Hz for respiration
and heart rate, respectively.

We must bear in mind that CVS power spectra also
contain lower frequency components [1,17]. In practice,
parametric modeling is usually restricted to a specific part
of the power spectrum. Because our interest here centers on
the cardiorespiratory interaction, we select for study the
frequency range that includes the main harmonics of car-
diac and respiratory oscillations f. and f, and their com-
binational frequencies as shown in Fig. 1(b). In addition,
we assume that the two higher basic frequency components
observed in all CVS signals [8,18] can be separated. Hence
the blood pressure signal can be approximated as a sum of
the cardiac and respiratory oscillatory components s(¢) =
s.(t) + s,(¢). Accordingly, we use a combination of zero-

phase forward and reverse digital filtering based on
\

Butterworth filters to decompose [19] it into two-
dimensional time series {s(t;) = [s.(t;), s,(t)], tx =
kh, k = 0:K} representing the cardiac and respiratory os-
cillatory contributions, respectively. A 18 000-point win-
dow out of the original signal, sampled at 360 Hz, was
resampled at 90 Hz yielding a signal for inference of length
500 s, with a step size of & = 1/90 s.

Following the suggestion of coupled oscillators [8,18],
we now choose the simplest model that can reproduce this
type of oscillation: two nonlinearly coupled systems with
limit cycles on a plane

X, =ax, Ty, = a;¢i(x,y) + \/Dljgj’
Yo = AyX, + Yo, Y. = Bidi(X,y) + \/D2j§j'

Here ¢ j(t) are zero-mean white Gaussian noises, the sum-
mation is taken over repeated indexes i = 1,...,22 and
Jj = r, ¢, and the base functions are

(D

— 2,2 2 .2 3,3 ,2 2 2 2,3 43 2 2
¢ - {1’ Xps Xes Vs Yes Xrs Xes Yiis Yés Xp Vs XeYes Xrs Xes XY XeVes XpYrs XeYes Yis Yo XpXes Xy Xes erc}, (2)

including nonlinear coupling terms up to third order. We
assume that measurement noise can be neglected. The two
dynamical variables of the model (1), x,(¢) and x.(¢) cor-
respond to s(¢) = {s,(¢), s.(¢)}, introduced above. Using (1)
the remaining two dynamical variables y(¢) = {y,(¢), y. ()}
can be related to observations {s(z;)} as

Sp(ty + h) — s,(ty — h)
2h

where n = r, c. Parametric representation (1) with a spe-
cial form of embedding (3) allows one to infer a wide class
of dynamical models including, e.g., the van der Pol and
FitzHugh-Nagumo models. Furthermore, it allows physi-
ological interpretation of model parameters.

Using (3) we can reduce the original problem of char-
acterizing the cardiorespiratory interaction to that of infer-
ring the set of unknown parameters M = {c, D} of the
coupled stochastic nonlinear differential equations

bnyn(tk) = + ansn(tk)) (3)

y = Uls, y)e + VDE(). )

Here £(1) is a two-dimensional Gaussian white noise with
independent components mixed with unknown correlation
matrix D. The matrix U will have the following block
structure

~ [[1 O x 07 x,x2 0
o[l v o el @

The vector of unknown coefficients ¢ = {a, 8, ..., an,
B2} with length M = 2B, has B = 22 diagonal blocks of
size 2 X 2 formed by the basis functions (2).

The model parameters can be obtained by use of our
novel stochastic dynamical inference method, based on the

\
Bayesian technique. Details, and a comparison with the
results of earlier research, are given elsewhere [20]. Here
we describe briefly the main steps in applying the method
to infer cardiorespiratory interactions. First, one defines the
so-called likelihood function €(y| 2M): the probability den-
sity to observe the dynamical variables y(f) under the
condition that the underlying dynamical model (4) has a
given set of parameters M. We suggest that, for a uniform
sampling scheme and a sufficiently small time step &, one
can use results from [21] to write the logarithm of the
likelihood function as

2 o op K
= = 4+ =
X log€(y| M) = IndetD X ];)[v(yk)c
+ (¥ — 00D (3, — re)]
+ NIn(27h). (6)

Here U, = U(y,), ¥, = h~'(y;4; — yi), and the vector
v(x) has components

& AU, (X)

v =y

n=1

m=1:M.
dax,,

Note that the form of (6) differs from the cost function in
the method of least-squares: the term involving v provides
optimal compensation of noise-induced errors [20]. In the
next step, one has to summarize a priori expert knowledge
about the model parameters in the so-called prior proba-
bility density function (PDF), p,,(M). We assume p,.(M)
to be Gaussian with respect to the elements of ¢ and
uniform with respect to the elements of D.

Finally, one can use the measured time series y to
improve the a priori estimation of the model parameters.
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The improved knowledge is summarized in the posterior
conditional PDF p,.(M]y), which is related to the prior
PDF via Bayes’ theorem

€(y| M) ppe (M)

ppost(jvlly) = fg(ylm)ppr(j\/l)dm .

)

For a sufficiently large number of observations, pp. is
sharply peaked at a certain most probable model M =
M*, providing a solution to the inference problem. To find
it, we substitute the prior p,(M) and the likelihood
£(y| M) into (7) and perform the optimization by differen-
tiation of the resulting expression with respect to ]A);’"' and
¢, yielding
| k=1

Z [¥e — Orel [y — Urell,  (®)

D nn’t(c) ==
pos K P

chouD) = By ' DwyD), T, =0@).

Here, use was made of the definitions

K—-1
A " a1
wy(D) = S, e + 1 Y 07Dy, — S v(y]
k=0
A A A K—1 A A A
5,0 =3 +nY U[D'0,
k=0

We repeat this two-step optimization procedure iteratively,
starting from arbitrary prior values ¢, and ipr. We empha-
size that a number of important parameters of the decom-
position of the original signal (e.g., the bandwidth, order of
the filters, and scaling parameters a;) have to be selected
to provide the best fit to the measured time series {s(#;)}.
The parameters of the model (4) can now be inferred
directly from the measured time series of blood pressure,
yielding the values shown in the first row of Table I. The
spectra of the inferred, x.(¢), and the measured, s,(¢),
cardiac oscillations are compared in Fig. 2. Similar results
are obtained for the respiratory oscillations. In particular,
the parameters of the nonlinear coupling and of the noise

TABLE I. Coefficients corresponding to the last three base
functions in (2), {x,x., x2x,, x,x2}, with {@,} corresponding to
the respiration coupling to cardiac rhythm and {;} to the cardiac
oscillation coupling to respiration. The top row gives coefficients
inferred from measured data. The middle row represents coef-
ficients inferred from synthesized data, obtained as an average of
100 nonoverlapped 1600 s blocks. Each block includes 160000
points with a sampling time 0.01 sec. The estimation error is
shown in the bottom line.

axyy P @y P axn Bxn D Dy

012 220 0048 027 —0.066 —867 0.18 8.13
012 241 0048 028 —-0.070 -—861 0.18 8.14
29% 93% 18% 5.6% 5.2% 07% 02% 0.2%

intensity of the cardiac oscillations are B, = 2.2, 8, =
0.27, By, = —8.67,and D,, = 8.13; here we use a double-
indexing scheme for the coefficients of the linear expan-
sion (2), the scheme being evident from the caption in
Table I. There is clearly a close resemblance between
spectral peaks at the basic and combinational frequencies,
nf,. + mf,. A similarly close resemblance is found for
respiratory oscillations, s,(¢) and x,(¢), respectively.

The frequency content can be reproduced from a uni-
variate signal s(7) because for f, < f, it can be written
in the form: s(¢) = s,(t) + A.(t) cos[f.t + 0.(t)] + ...,
where A.(¢), 6.(z) are slow amplitude and phase and the
omitted terms oscillate at multiples of f,.. Fast-oscillating
terms in this expansion correspond to a cardiac signal s,.(7)
and this ensures the validity of the signal decomposition
s(t) = 5,(t) + s.(¢r), with components corresponding to
weakly coupled nonlinear oscillators.

To validate these results we consider a synthesized
signal x(¢) = x,(¢) + x.(¢) where x,(¢), x.(r) are obtained
using numerical simulations of the model (1) with parame-
ters taken from the inference. Repetition of the full infer-
ence procedure, using the synthesized univariate signal x(r)
as a time-series data input s(z), gives us the cardiac oscil-
lator parameters B,y = 6.32, B, = 0.49, B,, = 6.03, and
D,, = 3.44. These differ from the values in the first row of
Table I, but provide a correct estimation of the order of
magnitude of the absolute values of the measured parame-
ters. The main source of error here is the fact that we have
to reconstruct the state of multidimensional system using
the univariate signal.

If the state of the system was known, the accuracy of
inference could be arbitrarily high [20]. We illustrate this
point by using the synthesized time series {x,(z), x.(¢),
y,(£), y.(£)} as bivariate data for two coupled oscillators
to infer parameters of the model (1). The results, summa-
rized in the second row of Table I, show that parameter

FIG. 2 (color). (a) Power spectra of cardiac oscillations ob-
tained from measured data (black line) and from the synthesized
model signal (green line). Arrows summarize combinational
frequencies recovered in our analysis, corresponding to the
nonlinear cardiorespiratory interaction. (b) Limit cycles of the
cardiac oscillations [x.(n), y.(n)] obtained from measured data
(black line) and the synthesized signal (green line).
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values can be estimated with relative error <10%. Estima-
tion of the noise intensity now has a relative error <4%.
Accuracy of the estimation can be further improved by
increasing the total observation time. The decomposition
problem could, of course, be eliminated by using bivariate
cardiovascular data, which are now commonly available.

The relative magnitudes of the parameters obtained,
|Bil > |a;|, indicate that respiration influences cardiac
activity more strongly than vice versa, consistent with the
results of methods specifically developed for detecting the
coupling directionality of interacting oscillators [14], and
with direct physiological observations. Furthermore, the
presence of nonzero quadratic terms is consistent with
recent results obtained by time-phase bispectral analysis
[12]. The frequency and amplitude variability of the main
oscillatory components [8] is implicitly captured within the
coupling terms and noise. We find that the present model
class is able to reproduce, not only the coupling direc-
tionality, but also to a large extent the 1:7 and 1:8 cardio-
respiratory synchronization properties of the measured
data, as will be discussed in detail elsewhere.

In summary, we have solved a long-standing problem in
physiology: inference of a nonlinear model of cardiores-
piratory interactions in the presence of fluctuations. Our
technique estimates simultaneously the strength and direc-
tionality of coupling, and the noise intensity in the cardio-
respiratory interaction, directly from measured time series.
It has also demonstrated stable and reliable inference of a
broad class of models with high accuracy [20] and can, in
principle, be applied to any physiological signal. Although
our technique is only a first step in the development of
path-integral-based dynamical inference of stochastic non-
linear models, it can readily be extended to encompass
frequencies below that of respiration, nervous feedback
control mechanisms, time-delay functions, nonpolynomial
basis functions, parametric, and nonwhite noise. Our solu-
tion is facilitated by an analytic derivation of the likelihood
function that optimally compensates noise-induced errors
in continuous dynamical systems. It has enabled us to
effect the first application of nonlinear stochastic inference
to identify a dynamical model from real data.
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