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Entanglement in Spin Chains and Lattices with Long-Range Ising-Type Interactions

W. Dür,1 L. Hartmann,1 M. Hein,1 M. Lewenstein,2 and H.-J. Briegel1,3

1Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
2Institut für Theoretische Physik, Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany
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We consider N initially disentangled spins, embedded in a ring or d-dimensional lattice of arbitrary
geometry, which interact via some long-range Ising-type interaction. We investigate relations between
entanglement properties of the resulting states and the distance dependence of the interaction in the limit
N ! 1. We provide a sufficient condition when bipartite entanglement between blocks of L neighboring
spins and the remaining system saturates and determine SL analytically for special configurations. We find
an unbounded increase of SL as well as diverging correlation and entanglement length under certain
circumstances. For arbitrarily large N, we can efficiently calculate all quantities associated with reduced
density operators of up to ten particles.
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The investigation of entanglement properties of strongly
interacting many body systems has proven to be a fruitful
approach. Entanglement was shown to indicate quantum
phase transitions [1–4] and the presence of long-range
correlations even in systems with gapped Hamiltonians
[5]. In density matrix renormalization group (DMRG)
theory, a powerful numerical method which allows one to
treat spin chains of up to a few hundred particles with high
accuracy, the investigation of the role of entanglement has
allowed one to understand [6,7] and overcome [8] limita-
tions of the method. Standard DMRG can treat spin sys-
tems with a bounded amount of bipartite entanglement,
measured by the entropy of entanglement SL between
blocks of L neighboring spins and the remaining systems
(e.g., spin chains with short-range interactions). The gen-
eralized method of Ref. [8] can also handle spin systems
arranged on two (and higher) dimensional lattices, where
SL scales with the surface of the block, SL / L1=2.

Despite these significant developments, many spin sys-
tems in two and three dimensional setups remain untract-
able, among them disordered systems or systems with
long-range interactions where SL / L. Such spin lattice
systems with long-range interactions occur naturally in
several quantum optical setups. There, Ising-type interac-
tions are induced by other interactions with a characteristic
distance dependence. Examples are the internal states of
neutral atoms in an optical lattice that interact via an
induced dipole interaction [9] (see also [10]) or ions stored
in microtraps where interactions are induced by pushing
the ions dependent on their internal state such that they feel
a different Coulomb potential [11–13]. In this Letter we
analyze spin chains and spin lattices in arbitrary dimen-
sions with long-range Ising-type interactions. Despite the
failure of known methods, the restriction to Ising-type
interactions allows us to analyze both static and dynamical
entanglement properties of the system in great detail. We
find relations between entanglement properties of states
j�ti—resulting from evolution of the system initially pre-
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pared in some product state j�0i under the Hamiltonian H
for time t—and the distance dependence of the interaction.
We obtain information about the dynamics of entanglement
and, at the same time, a large family of multipartite en-
tangled states with rich entanglement properties.

Our results are based on a description of the states j�ti
in terms of generalized valence bond solids (VBS) [14]. In
this picture, we can efficiently calculate the reduced den-
sity operators of a small number L � 10 of arbitrary spins,
even if the total number of spins N is large (a standard PC
can easily handle N � 105 particles). We can hence deter-
mine all quantities associated with reduced density opera-
tors of small subsystems, including, e.g., higher order
correlation functions or (bounds on) bipartite entanglement
SL. We emphasize that for general pure states, the calcu-
lation of reduced density operators is a highly nontrivial
task due to the exponential scaling with the system size N.
For certain distance laws, we can describe the scaling of
blockwise entanglement with the size of the block L in the
limit N ! 1. In one dimension, we obtain a sufficient
condition when blockwise entanglement saturates, which
is the case whenever the distance dependence of the inter-
action strength scales as 1=r	 with 	> 1. For special
configurations, we calculate SL analytically for all L and
show that SL can indeed grow unboundedly and propor-
tional with L. This is in contrast to entanglement properties
of 1D-VBS states recently analyzed in [15], where SL is
bounded by two. Finally we find that the correlation length
diverges under certain circumstances, even if SL saturates.

In our model, we consider N spin-1=2 systems (qubits)
with pairwise interactions, described by an Ising-type
Hamiltonian

H �
X

k<l

f�k; l	
1

4
�1 
 ��k	

z 	 � �1 
 ��l	
z 	: (1)

We assume that the spins are arranged on a d-dimensional
lattice with fixed geometry and are initially completely
polarized in the x direction, i.e., j�0i � j�i�N , where
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j�i � 1=
���
2

p
�j0i � j1i	. The methods we develop can also

describe disordered systems with random coefficients
f�k; l	 and can take arbitrary (product) input states into
account. We are interested in (entanglement) properties of

j�ti � e
itHj�0i: (2)

We consider the situation where the coupling between
spins obeys a certain distance law, in the sense that the
coefficients f�k; l	, describing the strength of the cou-
pling, depend only on the distance rkl � kk
 lk between
particles k and l, f�k; l	 � f�rkl	. In the example of ions
stored in microtraps [11,13], one finds f�rkl	 � r
3

kl .
Description in terms of valence bond solids.—The uni-

tary evolution operator U�t	 � e
itH in (2) can equiva-
lently be described by a product U �

Q
k;lUkl of com-

muting controlled phase gates Ukl � diag�1; 1; 1; ei�kl	kl
acting on pairs of qubits, where �kl � f�rkl	t. If U acts
on a completely polarized state j�0i � j�i�N and �kl 2
f0; �g, the resulting states are graph states [16,17]. Hence,
we will refer to states with arbitrary �kl (produced from
j�i�N) as weighted graph states. Verstraete and Cirac
recently proposed a description of graph states in terms
VBS [14]. Instead of maximally entangled pairs of qubits,
we use pairs where the degree of entanglement depends on
�kl. In this generalized VBS picture, we develop a descrip-
tion of all weighted graph states and extend it to all states
produced by the interaction Hamiltonian H acting on any
initially unentangled state.

Each qubit k of a physical state j�ti is replaced by N
1
(virtual) qubits k1 . . . kN
1. The VBS state j ~�ti with cor-
responding Hilbert space H � ��C2	N
1�N is given by a
tensor product of N�N 
 1	=2 independent, nonmaximally
entangled pairs of qubits j�kilji�Uk;lj�iki j�ilj shared be-
tween virtual qubits ki; lj of parties k; l, where each ki; lj
appears only once. Up to a normalization factor, we obtain
the corresponding weighted graph state j�ti � Uj�i�N

from j ~�ti � �j�kilji by performing local projections Pk �

j0kih~0 ~kj � j1kih~1 ~kj onto two-dimensional subspaces at all
locations k, where ~k � k1 . . . kN
1 and j ~mi � jmm . . .mi.
The VBS-like state j ~�ti, together with the projection
�kPk, thus provides an equivalent description of the state
j�ti. We can generalize this description to arbitrary prod-
uct input states j’1 . . .’Ni. In this case, the (unnormalized)
VBS-like state is of the form j ~�ti � �k;lj�kilji with
j�kilji�Uklj

������
’k

N
1
p

iki j
�����
’l

N
1
p

ilj , where j’i�	j0i��j1i
and j

����
’n

p
i�

����
	n

p
j0i�

����
�n

p
j1i. In the following, we use this

description to determine reduced density operators !A. For
the sake of simplicity, we consider weighted graph states,
i.e., states arising from input states j�i�N.

We denote by A an arbitrary subset of the N qubits, and
we call the set of remaining qubits B. Because all Ukl
commute and because unitaries in B do not influence !A �
trB�j�tih�tj	, we can write

!A �
Y

k;l2A

Ukl trBj�
0
tih�

0
tjU

y
kl; (3)
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with j�0
ti �

Q
k2A;l2BUklj�0i. We now determine !0

A �

trBj�
0
tih�

0
tj in the VBS picture, i.e., we start with the state

j ~�0
ti �

O

k2A;l2B

Uklj�iki j�ilj : (4)

For the following argumentation it is crucial that Ukl � 1

for k; l 2 B as is the case for j ~�0
ti but not for j ~�ti.

Performing the projections Pl on all particles l 2 B
(but not in A) leaves us with a state of the form
�l2B�

Q
k2AUklj ~�i ~kj�il�. We have a tensor product of jBj

states where in the lth state particle l 2 B is entangled with
a virtual system A. For each of these states we can inde-
pendently calculate the reduced density operator with re-
spect to A. We simply trace out particle l and obtain

!0
A�l	 �

1
2�j

~�iAh ~�j � j�liAh�lj	; (5)

with j�liA � �k2A�j0i � e
i�kl j1i	=
���
2

p
. Now, we perform

the projections Pk for all k 2 A. The resulting density
operator !0

A is (up to normalization) given by the Hada-
mard product of all density operators !0

A�l	, where the
Hadamard product of two matrices corresponds to compo-
nentwise multiplication in the computational basis. The
reduced density operator !A is then obtained from !0

A by
taking into account interactions within A leading to !A �Q

k;l2AUkl!
0
AU

y
kl. Finally, we normalize the resulting state.

Computable quantities.—The method outlined above
provides an efficient way to calculate reduced density
operators for all weighted graph states. The computation
time is linear in the number jBj of particles in the remain-
ing system (but exponential in jAj), as opposed to an
exponential scaling in N � jAj � jBj of computation
time and memory cost for general pure states. Hence, for
arbitrary large systems, all quantities that depend on the
reduced density operator of a small number of qubits can
be calculated efficiently. For instance, from !A of one and
two qubits, we can determine all two-point (and also higher
order) correlation functions Qk;l

	;� � h��k	
	 ��l	

� i 
 h��k	
	 i�

h��l	
� i, lower and upper bounds on the localizable entangle-

ment EL [4], the entanglement of formation between pairs
of particles, as well as the multipartite entanglement mea-
sure EMW [18]. The maximal classical correlation Qk;l

max

between two particles is given by the largest singular value
of the matrix Qk;l

	;� [4]. The localizable entanglement Ek;l
L is

the maximum amount of entanglement that can be estab-
lished between a pair of particles k; l, on average, by
performing local measurements on all other particles.
The relation Qk;l

max � Ek;l
L � Ek;l

A holds [4], where Ek;l
A is

the concurrence of assistance [19]. The measure EMW is
given by EMW � 2�1
 1=N

P
k tr�!

2
k	� [18]. In addition,

the (bipartite) entanglement between blocks of a small
number L � 10 of neighboring spins is measured by the
entropy of entanglement SL, that is the von Neumann
entropy of the reduced density operator !L, SL �
tr�!Llog2!L	. Clearly, 0 � SL � L, where SL � L indi-
cates maximal entanglement between the blocks. For
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blocks larger than 10 qubits, we make use of the strong
subadditivity of the entropy to derive upper bounds on SL.
By breaking a block of size L into n sub-blocks Li of
size jLij � L=n, we obtain S�!L	 �

Pn
1
i�1 S�!Li;Li�1

	 
Pn
1
i�2 S�!Li

	, where !Li;Li�1
is a sub-block of length

2L=n. The unitary operations Ukl; k; l 2 A, do not change
the entropy S�!A	 and hence the reduced density operator
!0
A can be used directly since S�!A	 � S�!0

A	. Never-
theless, upper bounds on the entropy are different for !A
and !0

A, where the latter turn out to be more stringent and
will hence be used in the following.

We can also prove monotonicity properties of S�!0
A	. For

a fixed size jAj, we add one particle j to B. The reduced
density operator is updated by Hadamard multiplication
with !0

A�j	. From theorem 5.5.12 in [20] follows that the
eigenvalues of the resulting density operator are majorized
by the eigenvalues of the initial one, which implies that the
entropy increases [21]. As a consequence we obtain lower
bounds on the entropy of entanglement S�!0

A	 when we
take into account only a subset ~B � B of all particles (and
ignore the other particles in B).

Static properties of resulting states.—We apply these
results to determine (static) entanglement properties of the
state j�ti for some fixed time t < � and for different
distance laws f�rkl	 � r
	

kl , 	> 0. Figure 1(a) shows the
maximal two-point correlation Qi;j

max in a chain of N � 105

particles as a function of the distance between particles
ki
 jk. We observe that correlations decay slower than
exponential. Therefore, the correlation length & and also
the entanglement length &E diverge [4]. This indicates
long-range quantum correlations for all power laws, as
we find that only exponential fall-off functions f�k; l	 �
e
'rkl lead to a finite correlation length. Figure 1(b) shows
the scaling of the entropy of entanglement SL with the
block size L for different power laws. Exact values are
plotted for L � 10, while upper bounds (corresponding to
jLij � 4) are plotted for L � 10. The upper bound on SL
seems to grow unboundedly for 	 � 1=2, whereas SL
saturates for 	> 1. For 	> 1 the system thus contains a
bounded amount of entanglement SL, but has a diverging
correlation length &.
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FIG. 1. Spin chain with N � 105, t � 0:3�, and f�rkl	 � r
	

for different 	. (a) Maximal two-point correlation Qi;j
max as a

function of the distance ki
 jk for 	 � 1=3 (dashed curve) and
	 � 3 (solid curve). (b) Exact values [upper bounds] of entropy
of entanglement SL as a function of block size L for 	 � 1=3 (4
[�]) and 	 � 3 (� [�]).
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The saturation of SL for 	> 1 can be proven analyti-
cally when we take the limit of an infinite chain (N ! 1)
and afterwards let the block size also go to infinity. Both
steps involve infinite products and sums, and we must con-
cern ourselves with convergence/divergence of these prod-
ucts and sums. In an infinite chain, the reduced density op-
erator for one qubit is !A�

1
2�1�cj0ih1j�c�j0ih1j�, with

c �
Q

1
k�1 cos

�1k
2 e
i

P
1

k�1
�1k=2 and �1k � r
	

1k t [22]. The
eigenvalues of !A are given by �1� jcj	=2, so we can omit
the phase of c. We write

Q
1
k�1 cos�1k � e

P
1

k�1
lncos�1k .

Taylor series expansions and Cauchy’s integral criterion
tell us that the sum in the exponent converges for 	> 1=2
and diverges to 
1 for 0<	 � 1=2. Hence, the infinite
product is nonzero in the first case and zero in the second
case. The entropy of entanglement SA is thus smaller than 1
for 	> 1=2 and equals one for smaller 	. In other words,
for slow fall-off functions (strong long-range interactions),
the entropy of a single particle is maximal, independent of
the time t > 0, as infinitely remote regions still influence
the qubit we consider.

To take the limit L ! 1 in the case 	> 1=2 we use a
bound given by S�!L	 � S�!0

L	 �
PN

i�1 S�!
0
Li
	 for sub-

block sizes jLij � 1. In this case, the convergence proper-
ties of the infinite sum of single particle entropies (each
itself given by an infinite product) can be determined by
using again Taylor series expansion and Cauchy’s integral
criterion. In the limit N ! 1 and L ! 1, the upper bound
converges to a constant value for 	> 1 and hence the
exact value of the entropy SL also saturates as a function
of L for power laws f�rkl	 � r
	

kl with 	> 1. We can
generalize this result to d-dimensional lattices. When con-
sidering blocks of L particles contained in a d-dimensional
ball, SL can at most grow like the volume of that ball,
whereas we find that for 	> d the upper bound on SL
grows at most like the surface of the ball.

For special cases, we get a complete analytic description
of the entanglement properties. In the following, we con-
sider an interaction Hamiltonian with a fixed interaction
length ) and constant interaction strength, i.e., f�rkl	 � 1
if rkl � ) and zero otherwise. For t � �, the resulting
states j��i are special instances of graph states [16]. We
denote a d-dimensional quadratic block of size L � ad

neighboring spins by A and the remaining system by B.
We measure the bipartite entanglement between A and B
by the entropy of entanglement SL. For graph states, SL is
given by the binary rank of the adjacency matrix �AB
between the quadratic block A and the rest B [17]. If the
lattice is large enough to contain not only the block A but
also the larger block of size �a� 2)	d with A in its center,
then no boundary effects have to be taken into account. We
can inductively show that the matrix �AB has maximal rank
by considering different layers Ak with geometric distance
k to B, starting with k � 1. Hence, SL is simply given by
the number of vertices within A that are connected to the
rest B, so SL � ad 
 �a
min�2); a	�d with a �

����
LN

p
. In a

general situation, no such simple rule to calculate SL holds
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FIG. 2. Dynamics of entanglement for chain with N � 105 and
f�rkl	 � r
3

kl . (a) Entropy of entanglement SL for blocks L � 1
(bottom) up to L � 7 (top). (b) Two-point correlations Qi;j

max for
ki
 jk � 5 (solid line) and EMW (dashed line).
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(in contrast to what is suggested in [14]). A counterex-
ample is given by a state with N � 4, ’13 � ’14 � ’23 �
’24 � �, which has S�!12	 � 1. For an (infinite) chain of
particles we obtain SL � min�2); L	. As L increases, SL
saturates at the value 2) for any fixed interaction length ).
Only if ) itself goes to infinity as N ! 1, SL can grow
(unboundedly) with L when the ratio of the interaction
length to the total number of particles is kept constant. For
a given interaction length ), and for any ball containing L
particles, only those particles that have connections to the
remaining system contribute to SL. The entropy SL equals
L if the radius of the hypersphere is smaller than ). Other-
wise, SL scales essentially like the volume of a surface
shell with thickness ) , that is, SL / )L�d
1	=d. Two-point
correlation functions Qi;j

	;� turn out to be zero for all pairs
of particles. Nevertheless, j��i is maximally connected
[16], which means that a Bell state between any pair of par-
ticles can be obtained by local measurements. Hence, lo-
calizable entanglement EL � 1 and the entanglement
length is infinite. Finally, EMW � 1 for all such states.

Dynamics of entanglement.—We return to the case of a
chain of particles and to Hamiltonians with distance de-
pendence f�k; l	 � r
	

kl and consider the dynamics of en-
tanglement, that means the change of entanglement and
correlations of the state j�ti with time. The scaling of the
entropy with block size L is essentially still governed by
the specific form of the distance dependence for any finite
t, because infinitely remote regions still influence a sub-
system in a similar way as discussed before.

For large times t, more and more of the interaction
phases �kl � f�k; l	t start to oscillate (as they are effec-
tively taken modulo �) and approach in the limit of large t
a (quasi-)random distribution. In the limit of an infinite
chain and t ! 1, the entropy of the reduced density op-
erator of any finite group A of particles is maximal,
S�!A	 � jAj. This can be seen by considering the off
diagonal elements of reduced density operators, which all
contain infinite products of cosines of (sums of) random
angles. All these products tend to zero for N ! 1, leading
to a maximally mixed state. For a chain of N � 105

particles with f�rkl	 � r
3
kl the time dependence of the

entropy of entanglement for blocks up to size 7 is plotted
in Fig. 2(a), while Fig. 2(b) shows two-point correlation
functions Qmax and the multipartite measure EMW.

In this Letter we have investigated entanglement prop-
erties of states generated from product states by long-range
Ising-type interactions. For an (arbitrary) total number of
particles N, and using a description in terms of generalized
VBS, we could efficiently determine the reduced density
operators of a few (�10) particles and hence all quantities
which are associated with reduced density operators. For
different distance laws, we investigated the scaling of
blockwise entanglement and showed that in 1D SL satu-
rates for f�rkl	 / r
	

kl for all 	> 1. We also found diverg-
ing correlation and entanglement lengths for all power
laws. Our methods can also be applied to disordered sys-
09720
tems, such as quantum lattice gases, spin glasses, or the
semiquantal Boltzmann gas (introduced in [17]). We re-
mark that related studies have recently been performed for
harmonic lattice systems in Ref. [23].
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