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Theory of Incommensurate Magnetic Correlations Across the Insulator-Superconductor
Transition of Underdoped La2�xSrxCuO4
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The main feature in the elastic neutron scattering of La2�xSrxCuO4 is the existence of incommensurate
peaks with positions that jump from 45 � to 0 � at 5% doping. We show that the spiral state of the t�
t0 � t00 � J model with realistic parameters describes these data perfectly. We explain why in the insulator
the peak is at 45 � while it switches to 0 � precisely at the insulator-metal transition. The calculated
positions of the peaks are in agreement with the data in both phases.
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FIG. 1. The phase diagram of the t� t0 � t00 � J model at
t=J � 3:1 and small uniform doping [15]. Points corresponding
to LSCO and YBCO are shown. The line separates the stable
spiral phase and the unstable region (labeled ‘‘?’’).
Introduction.—The phase diagram of La2�xSrxCuO4

(LSCO) shows that the magnetic state changes dramati-
cally with Sr doping. The parent compound La2CuO4

exhibits three-dimensional long-range antiferromagnetic
(AF) order below 325 K [1]. The Néel order disappears
at Sr concentration x � 0:02; however, two-dimensional
(2D) short-range AF correlations exist at any doping [2]
(see also Ref. [3] for a review). At x � 0:055 the system
exhibits only hopping conductivity and behaves like an
Anderson insulator, while the usual dc conductivity as
well as superconductivity appear at x > 0:055 [2,3].

Static magnetic ordering at very low temperatures has
been observed both for x < 0:055 and x > 0:055. The
elastic neutron scattering peak is close to the AF position
Q0 � ��;��, but is shifted from this position by 	Q: Q �
Q0 	 	Q. We set the lattice spacing a � 1. This shift
indicates a one-dimensional incommensurate spin modu-
lation. The dependence of the shift on doping has been
studied in the superconducting phase [4], as well as in the
insulating phase [5–7]. These studies have revealed the
following remarkably simple dependence of the elastic
peak shift on doping x (see Fig. 7 in [7]):

0:055<x< 0:12: 	Q� 2x�
�;0� or 	Q� 2x�0;
��;

0:02<x< 0:055: 	Q�
���
2

p
x�
�;���: (1)

Thus the 1D incommensurate spin modulation is propor-
tional to doping and the direction jumps from 45 � to 0 �

exactly at the point of the insulator-metal transition.
One of the early proposals made by Shraiman and Siggia

in Ref. [8], and later explored in the context of the Hubbard
and the t� J models [9–15], was that for small doping the
collinear Néel order gives way to a noncollinear spiral
state. There is a gain in energy since the holes can hop
easier in a spiral background. However, the issue of stabil-
ity of the spiral state remained rather controversial. Using
chiral perturbation theory [16] we have recently revisited
the problem of stability of the spiral state in the extended
t� t0 � t00 � J model [15], and have found that the uni-
form �1; 0� spiral state is stable (at low doping) above some
critical values of t0; t00. The stability is due to quantum
05=94(9)=097005(4)$23.00 09700
fluctuations (order from disorder effect). Even more im-
portantly, superconductivity coexists with the spiral order.
The starting point of the approach [15] is the ground state
of the Heisenberg model which incorporates all spin quan-
tum fluctuations. The chiral perturbation theory allows a
regular calculation of all physical quantities in the leading
order approximation in powers of doping x. Subleading
powers of x depend on the short-range dynamics and hence
cannot be calculated without uncontrolled approximations.
Therefore the approach is parametrically well justified in
the limit x
 1. The phase diagram of the t� t0 � t00 � J
model obtained in Refs. [15] is presented in Fig. 1. From
the Raman data [17], J � 125 meV and we set t=J � 3:1,
following the calculations of Andersen et al. [18]. The
values t0 � �0:5J, t00 � 0:3J for LSCO, and t0 � �0:8J,
t00 � 0:6J for YBCO are taken from the same calculation.
From now on we measure all energies in units of J (J � 1).
The matrix elements t0 and t00 are small compared to t, but
nevertheless are crucially important for the stability be-
cause they influence substantially the hole dispersion. The
pitch of the uniform superconducting spiral state is [15]

	Q �
Zt

s
x�1; 0� � 5:8x�1; 0�; (2)
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where 
s � 0:18 is the spin stiffness of the Heisenberg
model and Z � 0:34 is the quasiparticle residue. The resi-
due depends weakly on t0 and t00, and 0.34 is the value for
LSCO [15]. Notice that Eq. (2) is in very good agreement
with the data (1) in the metallic phase, x > 0:055. How-
ever, a different analysis is needed to explain the data (1) in
the insulating region, x < 0:055.

In what follows we will consider mostly the insulating
phase. The possibility of spiral ordering in the insulator has
been stressed recently by Hasselmann et al. [19]. However,
the dynamical origin of the spiral, the pitch of the spiral, as
well as the ‘‘jump’’ of the spiral direction at the insulator-
metal transition still remain unexplained. It is the purpose
of the present work to explain all these phenomena. In
essence, our idea is the following. The spiral �1; 0� state of
the conductor has lower energy than that of the �1; 1� state
only due to the presence of the Fermi motion energy [15].
On the other hand, without the Fermi motion contribution,
the �1; 1� energy is lower than the �1; 0� energy. In the
region x < 0:055 each hole is localized near its Sr ion,
hence there is no Pauli blocking (Fermi energy) and the
system immediately crosses over to the �1; 1� spiral state.
Following this line of reasoning we will demonstrate below
that the whole variety of experimental data in the insulator
and across the insulator-metal boundary can be consis-
tently explained. In the insulator, the ground state is
strongly nonuniform, with the holes trapped in the vicinity
of the randomly distributed Sr ions, as confirmed by the
variable range hopping (VRH) behavior of the dc conduc-
tivity for x < 0:055 [3,20]. Because of the presence of the
Coulomb potential (see below) and disorder, it seems likely
that the transition to the metallic (uniform) phase at x �
0:055 is of the density-driven percolation type. Thus we
adopt this point of view although the exact nature of the
transition is not crucially important for our analysis.

Coulomb trapping of holes.—Let us consider first a
single Sr ion with a single hole in an AF background.
The hole is trapped near Sr by the Coulomb potential
e2=��e

����������������
r2 	 d2

p
� � e2=��er� where d is the distance from

the CuO2 plane to the Sr ion and �e is the effective
dielectric constant. For zero doping, �e � 30 and it in-
creases with doping, as discussed in [3]. In momentum
space the hole is localized near one of the points k0 �
�
�=2;
�=2�, which are the centers of the four faces of
the magnetic Brillouin zone (MBZ). In the vicinity of these
points the dispersion is quadratic: �k � �1

2 k
2
1 	

�2

2 k
2
2,

where k is defined with respect to k0, and k1 is perpen-
dicular to the face of the MBZ, while k2 is parallel to it. For
values of t0 and t00 corresponding to LSCO we find that the
dispersion is practically isotropic �1 � �2 � � � 2:2
[15]. Since the lattice spacing is about 3.85 Å this value
corresponds to an effective mass of about two free electron
masses, in agreement with the optical conductivity data
[3]. The solution of the Schrödinger equation

���r2=2� e2=��er��� � �� (3)

determines the ground state wave function and the ground
09700
state energy of the localized hole:

��r� �
���������
2=�

p
�e��r; � � ���2=2; (4)

where � � 2q2=��e��. Using the hopping conductivity
data at very low doping (x � 0:002) [21] we estimate the
inverse size � � 0:4. At higher doping (but still in the
insulator) the value of � might decrease slightly. Thus
throughout the insulating phase � is small and this justifies
the semiclassical approximation we use below. Note that
the semiclassical approximation is used only with respect
to the kinetic energy of the hole but not for the spin (we do
not use the 1=S expansion and account for all spin quantum
fluctuations via the chiral perturbation theory [15]).

Spiral induced by a single trapped hole.—Equations (3)
and (4) assume a rigid antiferromagnetic background.
However, one can gain energy relaxing the background
into the spiral state. In the spiral state there are still two
sublattices, sublattice ‘‘up’’ and sublattice ‘‘down,’’ but the
spin at every site of each sublattice is rotated by an angle �i
with respect to the orientation at r � 1

jii � ei��ri�m��=2j"i; i 2 “up” sublattice;

jji � ei��rj�m��=2j#i; j 2 “down” sublattice:
(5)

Here m � �cos�; sin�; 0� with arbitrary � as the ‘‘direc-
tor’’ of the spiral which is orthogonal to the magnetization
plane. Note that directions in spin space are completely
independent of directions in coordinate space. The wave
function of the hole  �r� has two components correspond-
ing to up and down sublattices. The total energy is of the
form [12,15]

E �
Z
d2r

(

s
2
�r��2 	  y�r�

�
�� r2

2 � e2
�er

���
2

p
Zte�i��e � r�����

2
p
Ztei��e � r�� �� r2

2 � e2
�er

0@ 1A �r�
)
;

(6)

where e � � 1��
2

p ;
 1��
2

p � is a unit vector orthogonal to a given

face of the MBZ. Let us search for a solution in the form

 �r� �
1���
2

p
1

�ei�


 �
��r�; (7)

where ��r� is given by Eq. (4). Variation of the energy (6)
with respect to � leads to the following equation

r2� �
���
2

p Zt

s

�e � r��2�r�: (8)

The solution of (8) is

� �
Zt���
2

p
�
s

�e � r�
r2

�1� e�2�r�1	 2�r��: (9)

Substitution of this solution together with (7) and (4) in
Eq. (6) gives the following total energy

E �



�
2
�
Z2t2

4�
s

�
�2 � 2

e2

�e
�: (10)
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Minimizing this energy one finds � � 2e2
�e
=��� Z2t2=

�2�
s��. However, we do not use directly this expression
since the effective dielectric constant �e is not known
accurately enough. Instead we rely on estimates for �
which directly follow from the hopping conductivity as
discussed after Eq. (4). As can be easily seen from Eqs. (5)
and (9) at distances r
 1=� our solution describes a
�1;
1� spiral, while in the opposite limit an effective
dipole is formed (see discussion below). The solution is a
variational one because we have used the ansatz (4). Even
though one can easily derive an exact equation for � which
can be solved numerically, this is not necessary since for
our purposes the details of the charge distribution are not
important.

We emphasize that the Coulomb trapping of the hole is
crucially important. Without such trapping the hole is
delocalized and a single delocalized hole does not generate
a static spiral. This is qualitatively different from the argu-
ments of Ref. [22]. The solution (9) does not carry any
topological numbers, and consequently, unlike the model
used in Ref. [23], our solution is not a Skyrmion. Other
topological reasons for ‘‘self-trapping’’ of holes have also
been given [24]; however, we pursue the Coulomb trapping
picture since it unambiguously follows from the parametri-
cally justified analysis of the t� J model.

The solution (5) and (9) depends on the spiral director
which is a purely classical variable and the energy is
independent of it. It is unlikely that a finite system has an
exactly degenerate ground state (spontaneous violation of
symmetry). This means that higher orders in � (�4 correc-
tions to the semiclassical solution) may give rise to a
kinetic energy for the director m and hence to quantum
rotations of m, lifting the degeneracy. Another quantum
effect is tunneling from one pocket in momentum space to
another. However, the quantum corrections are not impor-
tant for understanding the properties of LSCO since at
finite concentration of impurities the interaction between
them is much more important than the quantum corrections
to the semiclassical limit.

Effective dipole moment of the impurity and destruction
of the Néel order at 2% doping.—It is convenient to rewrite
Eq. (9) using the notation of the nonlinear � model. Far
from the impurity core, r� 1=�, the solution reads

	n � m� � mM
�e � r�
2�r2

; M �

���
2

p
Zt

s

� 8:2; (11)

where n � 	n	 n0 is the unit vector of antiferromagne-
tism, n0 � n�r � 1�, m � �n0 �m�, and m is the direc-
tor of the impurity. Here M is the effective dipole moment
of the impurity. Note that it is very large, M � 1.

The idea of destruction of the Néel order by randomly
quenched dipoles was put forward by Glazman and
Ioselevich [25]. Detailed renormalization group calcula-
tions based on this picture have been performed by
Cherepanov et al. [26] and we use their results. In particu-
lar an analysis of the experimental data by Keimer et al. [2]
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for the in-plane correlation length at x < 0:02 was per-
formed in [26]. This analysis shows that in order to explain
the data and hence the destruction of the Néel order at x �
0:02, one needs to have a value of M which satisfies the
following condition [26]: A � M2

N d � 20�1
 0:3�. Here
d � 2 is the dimensionality of the problem and N is the
dimensionality of the vector m. In our theory N � 2
because m is orthogonal to n0. Hence we conclude that
experiment gives Mexp � 8:9�1
 0:15�. This agrees well
with the theoretical value (11).

Structure of the insulating (spin-glass) region and tran-
sition into the metallic phase.—Here we consider the range
of doping 0:02< x< 0:055 where the insulating spin-
glass state is realized. Since elastic incommensurate neu-
tron peaks have been observed in this regime [5–7], there
are two characteristic length scales: lI / 1=x, related to the
incommensurability, and the magnetic correlation length
lM > lI, related to the spin-glass disorder (randomness)
and reflected in the (inverse) width of the elastic neutron
peaks.

It is clear that in order to minimize the dipole-dipole
interaction energy at finite impurity concentration (and at
zero temperature), the dipoles (11) will align in such a way
that all vectors e and m are the same. Such an alignment is
possible in spite of the random positions and generates an
average spiral [19]. Certainly around each dipole there are
deviations from the average described by (9). One can
consider the average spiral as a self-consistent field created
by all dipoles. To find the average pitch of the spiral let
us consider a single dipole with field 	n given by (11)
in a background field nb � n0 	 	nb where 	nb �
�%mb�eb � r�. Here 	nb is the self-consistent field of the
dipoles, eb � �1=

���
2

p
;
1=

���
2

p
� is a unit vector orthogonal

to the face of MBZ, and % is a parameter. The interaction of
the dipole with the background field is given by:

s

R
�r	n��r	nb�d2r � �M
s�m �mb��e � eb�. Clearly

the interaction energy has a minimum at m � mb and e �
eb. The total energy at a finite concentration x consists of
the energy of each particular impurity (10), the interaction
energy, and the elastic energy of the background:

E% � Ex� 
sCM%x	

s
2
%2: (12)

In the interaction energy term we have introduced the
finite-size correction constant C. Indeed, Eq. (11) is valid
only at very large distances from the impurity. However, at
a finite distance, the effective dipole moment is reduced,
according to Eq. (9), by the amount C � �1� e�2�r�1	
2�r��. Substituting r � 1=

�������
�x

p
and � � 0:4, we find for

x � 0:03–0:05 the value C � 0:7. Minimizing (12) with
respect to % we find % � CMx. Hence the average pitch is

	Q � %eb � C
Zt

s
x�1;
1�: (13)

This expression determines the incommensurate shift of
the neutron peak and agrees well with the experimental
data (1) since CZt=
s � 4:1.
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The last question we want to discuss is the microscopic
origin of the correlation length lM. First we notice that
without randomness we would automatically have lM �

1, whereas experimentally this quantity is about lM �

25–40 �A [7]. It has been suggested in Ref. [19] that topo-
logical defects related to the random positions of impuri-
ties can destroy the long-range spiral order. This is a
possible scenario; however, we suggest a different mecha-
nism. In our opinion, even randomly distributed dipoles
(11) would create a true long-range spiral order, similarly
to a 2D ferroelectric. However, our main observation is that
the situation is not fully described by the pointlike dipoles.
Each impurity has a finite-size core [see Eq. (9)] with
diameter 1=�� 3–5 lattice spacings (depending on dop-
ing). Therefore, given a random distribution of positions,
there is always a finite probability of impurity overlap. As
soon as the impurities overlap, a two-hole ‘‘molecule’’ is
formed and the situation changes dramatically. In the
molecule, the Pauli blocking starts to play a role and in
order to minimize the energy the holes prefer to occupy
different pockets in momentum space. If two pockets are
occupied, the �1; 0� spiral has lower energy, and this is
exactly what happens in the conducting phase [15]. Hence
such a molecule has a local spiral along �1; 0� or �0; 1�
direction. This spiral frustrates the �1; 1� background and
there is always a finite concentration of such frustrating
dipoles. Hence the molecule dipoles destroy the �1; 1�
background similarly to the way the ‘‘atomic’’ (single)
dipoles destroy the Néel background at x < 0:02. One
can consider these ‘‘molecules’’ as a precursor to the
transition to the conductor where the �1; 0� spiral is real-
ized. According to this picture, the spin-glass correlation
length lM is large (but always finite) at very small x and it
should decrease dramatically towards the percolation point
x � 0:055 where the ‘‘molecular’’ configurations are be-
coming more important. This is exactly what is observed in
experiment, as seen in Fig. 6 of Ref. [7]. In the super-
conducting phase the magnetic correlation length should
increase very rapidly, since theoretically it is infinity in the
fully uniform, metallic phase [15]. Indeed, experimentally
the correlation length quickly approaches the uniform limit
[7] (it is >200 �A, x � 0:12).

In conclusion, we have developed a description of the
magnetic properties of underdoped La2�xSrxCuO4, based
on the extended t� J model. The theory describes the
incommensurate elastic neutron scattering above and be-
low the metal-insulator transition at x � 0:055. In particu-
lar, it explains why the incommensurate peak position
rotates by 45 � exactly at the insulator-metal transition.
The theory does not contain any fitting parameters, and
the positions of the neutron peaks both in the conducting
(2) and in the insulating (13) phases, as well as the critical
concentration for destruction of the Néel order, follow
from the calculated parameters of the extended t� J
model. We also note that in La2�xSrxCuO4 static charge
modulation (stripes) has not been directly observed, sug-
09700
gesting that it is very weak or not present at all. We thus
believe that a theory based on spiral magnetic correlations
and no charge order is fully sufficient to describe the
phenomena in this material.
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