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Vortex Sublattice Melting in a Two-Component Superconductor
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We consider the vortices in a superconductor with two individually conserved condensates in a finite
magnetic field. The ground state is a lattice of cocentered vortices in both order parameters. We find two
phase transitions: (i) a “vortex sublattice melting” transition where vortices in the field with lowest phase
stiffness (“‘light vortices”) lose cocentricity with the vortices with large phase stiffness (‘“heavy
vortices’), entering a liquid state (the structure factor of the light vortices vanishes continuously; this
transition is in the 3Dxy universality class); (ii) a first-order melting transition of the lattice of heavy

vortices, in a liquid of light vortices.
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Theories with multicomponent bosonic scalar matter
fields minimally coupled to a gauge field are of interest
in a variety of condensed matter systems and beyond. This
includes superconducting low-temperature phases of light
atoms [1-6] under extreme enough pressures to produce
liquid metallic states, easy-plane quantum antiferromag-
nets [7], as well as other multiple-component supercon-
ductors [2,3]. It also has applications in particle physics
[8]. The projected liquid metallic states of hydrogen
(LMH) [1] may soon be realized in high pressure experi-
ments [9-11]. At low temperatures, compressed liquid
hydrogen is particularly interesting since it features promi-
nent quantum fluctuations which lead to the possibility of a
new state of matter, a near ground state liquid metal [1]. Its
superconducting counterpart involves Cooper pairs of elec-
trons and protons [1], whence symmetry precludes
Josephson coupling between different condensate species.
Resolving what happens to such a system in a magnetic
field is now a matter of some urgency, due to new and
detailed first principles calculations predicting LMH under
extreme pressures of order 400 GPa [10]. This is not far
from experimentally achieved pressures of 320 GPa [9],
where hints of a maximum in the melting temperature
versus pressure are evident. Magnetic-field experiments
may very likely be exclusive probes to provide confirma-
tion of LMH. A first study of the phase diagram of the
projected LMH in magnetic fields has been presented,
unveiling a phase diagram with rich structure [5]. This
raises issues of interest also in the broader domain of
physics concerning the order and universality classes of
possible phase transitions separating phases of partially
broken symmetries in quantum fluids. We report a study
of this using a confluence of exact topological arguments
and large scale Monte Carlo (MC) simulations.

For a general number of components N, the Ginzburg-
Landau model is defined by the Lagrangian
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Here, {\1/8“) (r)a =1,..., N} are complex scalar fields,
M@ is the mass of the condensate species a, and D =
V —ieA(r). In LMH each individual condensate is con-
served, consequently V[{\I’g’)(r)}] is only a function of
I‘I’E,“) (r)|>. The model is studied in the phase-only approxi-
mation ‘lfg")(r) = |‘I’g)‘)| exp[if@(r)], where I‘l’ga)l =
const. Then, the V term is a constant which may be omitted
from the action [5].

For the discussions in this paper, another form of the
action is useful. Introducing |¢®|? = I‘PE)“)IZ/M(“) and
P2 =SV |92, Eq. (1) may be rewritten [6] in terms
of one charged and N — 1 neutral modes,
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While Eq. (1) is convenient for MC simulations, Eq. (2) has
advantages for analytical considerations, since the neutral
and the charged modes are explicitly identified. Moreover,
Eq. (2) is convenient for identifying various states of
partially broken symmetry, emerging when an
N-component system is subjected to an external magnetic
field [5,6].

We now focus on the case N = 2. In the case of LMH,
\1'81) and \sz) will denote protonic and electronic super-
conducting condensates, respectively, and hence |V|? <«
|y@|2. In zero external magnetic field, this system features
a low-temperature phase transition in the 3Dxy universality
class at T,; where superfluidity is lost, followed at higher
temperatures by an inverted 3Dxy transition at T, where
superconductivity and the Higgs mass of A (Meissner
effect) is lost [4]. Here, we will consider the system in
finite magnetic field at temperatures below T, [5].

We define a type-« vortex as a topological defect in \PE)Q)
associated with a nontrivial phase winding A9® = =217,
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whereas a composite vortex is a topological defect where
type-1 and type-2 vortices coincide in space. At low tem-
peratures the formation of a vortex lattice (VL) of non-
composite vortices is forbidden because these vortices have
a logarithmically divergent energy, whereas composite
vortices have finite energy [3,4]. In a type-II
2-component superconductor, therefore, a VL of compos-
ite type-1 and type-2 vortices is formed, illustrated in
Fig. 1(A). At elevated temperatures, the 2-component sys-
tem in a magnetic field will exhibit thermal excitations in
the form of fractional-flux vortex loops similar to the case
of zero magnetic field B =V X A = 0 [3,4]. Since the
field-induced vortices are logarithmically bound states of
constituent (elementary) vortices, the thermal fluctuations
will induce a local splitting of composite vortices in the
form of two half loops connected to a straight line [5], as
shown in Fig. 1(B).

Consider now the processes illustrated in Fig. 1(B) for
the case [¢(V|> < |?|2, upon increasing the temperature
beyond the low-temperature regime. We may view this
process as a type-1 closed vortex loop superposed on a
VL of (slightly) fluctuating composite vortices. An impor-
tant point to notice is that a type-a vortex does not interact
with a composite vortex by means of a neutral mode [6].
This follows from a topological argument that two split
branches will feature nontrivial winding in the composite
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FIG. 1 (color). (A) A type-II, N = 2 superconductor at zero
temperature in a magnetic field forms a lattice of composite
vortices, i.e., cocentered type-1 (red) and type-2 (blue) vortices.
(B) Low-temperature fluctuations in the composite vortex lattice
(VL) generate closed loops of type-1 vortices and local splitting
of field-induced composite vortices. This phase features super-
fluidity, as well as longitudinal superconductivity. (C) There is a
temperature region in low magnetic field when type-1 vortices
form a vortex liquid and the corresponding vortex loops are
proliferated, while type-2 vortices form a VL. Superfluidity is
lost, longitudinal superconductivity is retained. The arrow from
(B) to (C) illustrates type-1 loop proliferation. (D) A vortex
liquid of type-1 and type-2 vortices. Superfluidity and longitu-
dinal superconductivity is lost, i.e., the normal phase [5]. There
is no type-2 loop proliferation going from (C) to (D), since this is
a first-order melting transition of the type-2 VL in the back-
ground of a liquid of line-tension-less type-1 vortices.

neutral field #—#?, while a composite vortex line does
not. Hence, the splitting transition may be viewed as a type-
1 vortex-loop proliferation in a neutral superfluid. This is
illustrated in Fig. 2. Thus, we may utilize the well known
results for the critical properties of the 3Dxy model for
neutral superfluids described as a vortex-loop proliferation
[12-14]. This “vortex sublattice melting”” phase transition
is therefore in the 3Dxy universality class [12—14], not a
first-order melting transition. The resulting phase is one
where superfluidity is lost and longitudinal superconduc-
tivity is retained in the component ‘I’f)z) [5], illustrated in
Fig. 1(C).

Apart from the sublattice melting transition, thermal
fluctuations will produce a melting transition of the
type-2 VL at a higher temperature. It is well known that
sufficiently strong thermal fluctuations drive a first-order
melting transition of the Abrikosov lattice [14] in N = 1
superconductors. Because of the interplay with the prolif-
erated type-1 vortices, a counterpart to this effect for the
case N = 2 when |V]2 # [¢@|? is more complex. The
melting temperature Ty;(B) of the type-2 Abrikosov lattice
is suppressed with increasing magnetic field [14]. At low
enough magnetic fields, upon heating the system, the 3Dxy
type-1 vortex-loop transition at 7., (B) will be encountered
before the melting transition of type-2 vortices at Ty;(B).
Above Ty(B), longitudinal superconductivity is also lost,
whence we may infer that the vortex-liquid mixture of
liberated type-1 and type-2 vortices is the normal metallic
phase [5], depicted in Fig. 1(D).

The above is borne out in MC simulations. We consider
the model based on Eq. (1) for N = 2 on an L3 lattice (with
L up to 96) with periodic boundary conditions for coupling
constants |2 = 0.2, [¢@|> =2, and €2 = 1/10. The
ratio |#?]2/|yM|?> = 10 brings out one second order
phase transition at 7,,(B) in the 3Dxy universality class
well below the melting temperature Ty(B) of the VL. In

FIG. 2 (color). Detailed illustration of the low-temperature
thermal fluctuations in a VL of composite vortices. A local
excursion of a type-1 vortex away from the composite VL
may be viewed as a type-1 bound vortex-loop superposed on
the composite VL. The composite vortex line does not interact
with a vortex with nontrivial winding in Ay = A(6V-69) [6].
A splitting of the composite VL, illustrated in going from (B) to
(C) in Fig. 1, may be viewed as a zero-field vortex-loop prolif-
eration of type-1 vortices; a 3Dxy phase transition universality
[12-14].
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LMH [¢®@|2/](D|? = 2000, but the physical picture re-
mains. For real estimates of T, (B) and Ty;(B) in LMH, see
Ref. [1]. The Metropolis algorithm with local updating is
used in combination with Ferrenberg-Swendsen reweight-
ing [15]. The external magnetic field B studied is B* =
BY =0, B* = 21/32, thus there are 32 plaquettes in the
(x, y) plane per flux quantum. This is imposed by splitting
the gauge field into a static part Ay and a fluctuating part
Afye. The former is kept fixed to (A3, Ay(r), AY) =
(0, 27xf, 0), where f = 1/32 is the magnetic filling frac-
tion, on top of which the latter field is free to fluctuate.
Together with periodic boundary conditions on Ay, the
constraint §-(Ag + Apye)dl = 27 fL?, where C is a con-
tour enclosing the system in the (x, y) plane, is ensured. It is
imperative to fluctuate A, otherwise type-1 and type-2
vortices do not interact [3,4,6]. To investigate the transition
at T,;, we have performed finite size scaling (FSS) of the
third moment of the action. The simulations are done by
using vortices directly [4], but with a finite magnetic
induction B = 27/32.

We compute the specific heat Cy and the third moment
of the action S= B [drL, defined as M; = (($°) —
(S)*)/L3. Here, B is inverse temperature. The peak to
peak value of M; scales with system size as L('*®/7 and
the width between the peaks scales as L ™!/ [16]. To probe
the structural order of the vortex system, we compute the
planar structure function S (k ;) of the local vorticity

n@(r) = (V X [V — ¢A])/27, given by
1 2
Rl ) o
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where r runs over dual lattice sites and k | is perpendicular
to B. This function will exhibit sharp peaks for the char-
acteristic Bragg vectors K of the type-a VL and will
feature a ring structure in its corresponding liquid of
type-a vortices. The signature of vortex sublattice melting
will be a transition from a sixfold symmetric Bragg-peak
structure to a ring structure in SV(K) while the peak
structure remains intact in S@(K). Furthermore, we com-
pute the vortex cocentricity N, of type-1 and type-2
vortices, defined as N, = NS, — N, where

Z | ng) ()] 511(21)(1.), +n? (r)

Ni=-"L , 4
S 1n?(r)] @
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where §; ; is the Kronecker delta. The reason for consid-
ering N, is that we then eliminate the effect of random
overlap of vortices in the high-temperature phase T > T
due to vortex-loop proliferation, and focus on the compo-
siteness of field-induced vortices. The quantity N, is the
fraction of type-2 vortex segments that are cocentered with
type-1 vortices, providing a measure of the extent to which
vortices of type-1 and type-2 form a composite vortex
system. Hence, it probes the splitting processes visualized
in Fig. 1(B) and in Fig. 2. The results are shown in Fig. 3.

At T.;, Cy has a pronounced peak associated with the
3Dxy transition, and a broader less pronounced peak which
is the finite field remnant of the zero field inverted 3Dxy
transition [13]. Scaling of M5 at T, shown in Fig. 3(c)
yields the critical exponents a = —0.02 £ 0.05 and v =
0.67 = 0.03 in agreement with the 3Dxy universality class.
A novel result is that S'V(K) vanishes continuously as the
temperature approaches T, from below, precisely the hall-
mark of the decomposition transition that separates the two
types of vortex states depicted in Fig. 1(B) and 1(C). A
related feature is the vanishing of N, at T, as a function of
temperature, discussed in detail below. The first-order
melting transition takes place at Ty;, where S®(K) van-
ishes discontinuously. This is the temperature at which the
translational invariance is restored through melting of the
type-2 VL. The resulting translationally invariant high-
temperature phase is depicted in Fig. 1(D). In the tempera-
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FIG. 3 (color). MC results for N =2 |¢V|2 = 0.2, |y?|2 =
2, and e = l/m. (a) Cy (black) and N, (green). The Cy
anomaly at 7, = 0.37, where type-1 vortices proliferate,
matches the point at which N, drops to zero. Thus, type-1
vortices are torn off type-2 vortices. The remnant of the zero-
field anomaly in Cy, is seen as a hump at T ~ 3.6. (b) SV(K)
(red) and SP(K) (blue) for the particular Bragg vector K =
(m/4, —m/4). SD(K) vanishes continuously at 7T,,, while
S@(K) vanishes discontinuously at Ty; = 2.34. (c) FSS plots
of the M3 from which the exponents @ = —0.02 £ 0.05 and v =
0.67 £ 0.03 are extracted, showing that the sublattice melting is
a 3Dxy phase transition. (d)—(g) Plots of S@(k ) for the
temperatures Ty = 0.35, T, = 0.4, Ty = 1.66, and T, = 2.85,
respectively. At Ty, T, and T}, the VL remains intact. The VL
melts at Ty to give a vortex-liquid ring pattern at 7.
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ture interval T < T, the system features superconductiv-
ity and superfluidity simultaneously [5], since there is
long-range order both in the charged and the neutral vortex
modes. In the temperature interval T, < T < Ty, long-
range order in the neutral mode is destroyed by loop
proliferation of type-1 vortices, thus superfluidity is lost
[5]. However, longitudinal one-component superconduc-
tivity is retained along the direction of the external mag-
netic field. For T > Ty, superconductivity is also lost;
hence, this is the normal metallic state, which is a two-
component vortex liquid.

The most unusual and surprising feature is the continu-
ous variation of S((K) with temperature, even at T,
where it vanishes. The explanation for this is the prolifera-
tion of type-1 vortices (which destroys the neutral super-
fluid mode) in the background of a composite VL, which
the type-1 vortices essentially do not see; cf. Fig. 2. As far
as the composite neutral Bose field 01W—-9? is concerned,
it is precisely as if the composite VL were not present at all.
Hence, S!(K) vanishes for a completely different reason
than S®(K), namely, due to critical fluctuations, i.e.,
vortex-loop proliferation in the condensate component
with lowest bare stiffness. Such a phase transition does
not completely restore broken translational invariance as-
sociated with a VL, since for the type-2 vortices quite
remarkably, the VL order survives the decomposition tran-
sition, due to interaction between heavy vortices mediated
by charged modes. The vanishing of N, is particularly
interesting, and finds a natural explanation within the
framework of the above discussion. That is, for T < T,
we have N, = 1, so the vortex system consists practically
exclusively of composite vortices. As the temperature in-
creases, thermal fluctuations induce excursions such as
those illustrated in Fig. 1(B) and Fig. 2, which reduces
NZ, from its low-temperature value, reaching a minimum at
T.;, and then increase for T > T,;. Conversely, N, re-
mains essentially zero until T, thereafter increasing
monotonically. For temperatures above, but close to T,
fluctuations in vortices originating in A9® are still small,
so the variations in N, = NJ, — N, reflect thermal fluc-
tuations in vortices originating in A@V. The increase of
Ng, means that type-1 vortex loops are thermally gener-
ated, and thus tend to randomly overlap more with the
moderately fluctuating type-2 vortices. At their first-order
melting transition, type-2 vortices fluctuate only slightly.
Thus, the vanishing of N, above T reflects the increase in
the density of thermally generated type-1 vortex loops in
the background of a slightly fluctuating type-2 VL;
cf. Fig. 1(C).

We have investigated the character of thermally driven
phase transitions in a two-component vortex system in a
magnetic field. We find (i) a 3Dxy phase transition asso-
ciated with melting of the VL originating in the phases
with lowest stiffness, which may be viewed as vortex-loop
proliferation taking place in the background of a composite
VL (the structure function for type-1 vortices vanishes

continuously at the transition, and this has no counterpart
in a one-component superconductor); (ii) a first-order VL
melting of the type-2 vortex system. The corresponding
structure function vanishes discontinuously at the transi-
tion; this takes place in the background of a liquid of line-
tension-less type-1 vortices. This sets the type-2 VL melt-
ing apart from the corresponding phenomenon in one-
component superconductors.
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