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Thermal Diffusion Shock Waves
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The Ludwig-Soret effect or thermal diffusion, which refers to the separation of liquid mixtures in a
temperature gradient, is governed by a nonlinear, partial differential equation in space and time. It is
shown here that the solution to the nonlinear differential equation for a binary mixture predicts the
existence of shock waves completely analogous to fluid shocks and obeys an expression for the shock
velocity that is an exact analogue of the Rankine-Hugoniot relations. Direct measurements of the time
dependent, spatial absorption profile of a suspension of nanometer sized particles subjected to a sinusoidal
temperature field generated by a pair of continuous laser beams, as well as self-diffraction experiments,
show motion of the particles in agreement with the predictions of nonlinear theory.
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Since Ludwig’s first observation [1] that Na� and Cl�

ions migrate and are concentrated by imposition of a
thermal gradient imposed on a salt solution, the separation
of the components of a mixture in a thermal field, known as
‘‘thermal diffusion,’’ has been found not only in liquids,
but also in gases, and even in solids [2–4]. The phenome-
non of thermal diffusion, also known as the Soret or
Ludwig-Soret effect [5], typically produces a small sepa-
ration of solvent mixtures; however, when suspensions of
nanometer sized particles or solvent mixtures near a con-
solute critical point are exposed to thermal gradients [4,6]
the parameters describing the Ludwig-Soret effect can be
large, implying substantial separation of the components.
Here we show, for a sinusoidal temperature field in a binary
mixture where the Ludwig-Soret effect is large, that mov-
ing fronts, or ‘‘shock waves,’’ between the components of
the mixture are predicted by solution to the nonlinear
partial differential equation that describes thermal diffu-
sion. The shock waves that are predicted by the mathemat-
ics have properties identical to the familiar shock waves in
fluids and obey a mathematical relation for their velocities
exactly analogous to the well known Rankine-Hugoniot
relations that govern the state variables in a fluid shock.
Experiments using crossed laser beams to produce a sinu-
soidal temperature field in a cell containing nanometer
sized iron oxide particles in solution are reported showing
multiple diffraction of a laser beam, boundaries in the
absorption profiles of the particles characteristic of moving
shocks, and a particle distribution in space characteristic of
the nonlinearity in the solution to the differential equation
describing the Ludwig-Soret effect.

Although a number of methods have been employed
over the years for imposing a thermal gradient on a solution
to generate thermal diffusion, recently, a new technique
based on the interference of two crossed laser beams to
form an optical grating in a weakly absorbing fluid has
been introduced [4,7–9] that has sizeable thermal gra-
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dients, sinusoidal in space, but with only a small overall
temperature rise [10]. For a steady temperature field of the
form T � T0�1� sin�Kx��, where T0 is a temperature and
K is a wave number determined by the optical fringe
spacing in the grating, the Ludwig-Soret effect is governed
by [11]
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where c is the density fraction [12] of the first species, i.e.,
the mass per unit volume of the first species normalized to
the overall mass per unit volume of the solution, 1� c is
the density fraction of the second species, 
 known as the
thermal diffusion factor is given by 
 � D0T0=D, where D
is the mass diffusion constant and D0 is the thermal diffu-
sion coefficient, and where a dimensionless time 	 and
coordinate z given by 	 � K2Dt and z � Kx have been
used, where t is the time and x is the coordinate along the
grating. It can be seen that Eq. (1) is a partial differential
equation in space and time, nonlinear in the density frac-
tion. As in the case of fluid shocks, determination of the
important characteristics of the time development of the
density fraction is approached by ignoring dissipative ef-
fects, in this case, the second term on the right-hand side of
Eq. (1) that describes ordinary mass diffusion, which acts
to negate the effects of thermal diffusion. Without mass
diffusion, the differential equation governing the buildup
of c can be written
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where a ‘‘flux’’ f�c; z� is defined as f�c;z���
c�1�c��
cosz. Equation (2) is the differential form of a conservation
equation that expresses the buildup of c in a volume as a
consequence of a flux change in space. Since for a periodic
temperature field the density fraction must be periodic in z,
it follows that c�2�; 	� � c�0; 	�; hence, from Eq. (2) the
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integral of the density fraction over one optical fringe is
independent of time and the law

R
2�
0 c�z; t�dz � 2�c0

must be valid for any time t, where c0 is the density fraction
at time t � 0, assumed to be a constant throughout the cell.
The integral for the density fraction over z expresses
simple mass conservation for the Ludwig-Soret effect.

The Eulerian description of the profile c � c�z; 	� by
Eq. (1) can be transformed [13] into a Lagrangian descrip-
tion yielding the coupled pair of ordinary differential equa-
tions,
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that gives the motion of points with coordinates z �
z�	; c0;z0� and c � c�	; c0;z0� on the zc plane for a point
initially at �c0;z0� at time 	 � 0. It is noteworthy that
Eqs. (3) and (4) form a Hamiltonian system, analogous to
the well known canonical equations of Hamilton found in
classical mechanics, with the flux function in the present
problem taking on the role of the Hamiltonian function.
The motion of any point in the zc plane can be found by
eliminating d	 from Eqs. (3) and (4), which, when inte-
grated [14], yields a constant of the motion k1

c0�1� c0� cosz0 � c�1� c� cosz � k1; (5)

from which the locus of points �z; c� in time for a point
initially at �z0; c0� can be found. A family of trajectories for
several values of k1 is shown in Fig. 1. Equations (5) and
(4) can be combined and integrated over a path of constant
k1 to give an exact, albeit implicit, solution for the density
fraction versus time as
FIG. 1. Portrait of the trajectories of points in the zc plane
from Eq. (5) for several values of k1. Points to the right of z �
3�=2 with c < 1=2 move to the left and upwards initially. As
time progresses the points move upwards and to the right giving
multiple values for c for a single value of z.
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where F is an elliptic integral of the first kind, the parame-

ters a and b are given by a �
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and k2 is a constant depending on the initial point of the
trajectory [15]. The minus sign is used for points moving in
the hot region of the grating 0< z< �, and the plus sign is
used for motion in the cold region �< z < 2�.

A plot of the concentration versus coordinate for several
values of the time is given in Fig. 2, which shows that for
short times the density fraction of the first species builds up
forming progressively higher peaks in the cold region of
the grating region (near z � 3�=2) and decreases in the
warm regions. As time progresses, however, the curves
take on multiple values of c for a single value of z, at
which time the formal solution from the Hamiltonian
system is disregarded and the problem is treated by con-
sidering the density fraction to behave as a moving dis-
continuity, or shock wave. The velocity of the right-going
shock can be found directly from Eq. (4) as dzsh=d	 �
�f�cl; z� � f�cr; z��=�cl � cr�, which can be expressed as

dzsh
d	

� 
��cr � cl� � 1� cosz; (7)

where cl and cr are the density fractions to the left and to
the right of the discontinuity. The shock velocity varies in
time and can be seen to slow until it stops when cr � 1 and
cl � 0; , i.e., where there is complete separation of the
FIG. 2. Density fraction versus dimensionless distance along
the grating z for several values of the time from numerical
integration of Eqs. (3) and (4) with 
 � 15. The initial density
fraction is c0 � 0:3 giving the flat curve; the curves with
successively larger values of c at z � 3�=2 are for values of 	
equal to 0, 0.1, 0.2, and 0.4. Since 
 can be combined with 	 in
Eq. (1) by division by 
 to give a time parameter 
	, the curves
are universal for values of 
	 equal to 0, 1.5, 3.5, and 6.0. The
circles and squares mark the trajectories for two different starting
points on the z axis. For positive 
, c�z; 	� builds up in the region
near z � 3�=2; for negative values of 
, c�z; 	� builds up in the
region near z � �=2.
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components of the mixture. It is noteworthy that Eq. (7) is
an exact analog of the Rankine-Hugoniot relations for one-
dimensional fluid shocks: Eq. (7) expresses the thermal
diffusion shock velocity in terms of the density fractions on
either side of the shock, while the Rankine-Hugoniot rela-
tions express the ratios of the state variables of the fluid on
either side of the shock in terms of the shock velocity.

Since the effects of diffusion are large when the space
gradient of the density fraction is large, numerical integra-
tion of Eq. (1) was carried out to determine the influence of
mass diffusion on the motion of the shock. It was found
that the mass diffusion term produced a smoothing of the
features of the shock, but that the motion of a front was still
evident, the speed and the sharpness of the front being the
highest for large values of 
.

It is possible to determine the final distribution of the
two species in space with the effects of diffusion included
directly from Eq. (1) in closed form by noting that dc=dt �
0 at long times. Straightforward integration of Eq. (1) to
give the final distribution of cN�z� � c�z;1� when thermal
diffusion is exactly balanced by mass diffusion as cN�z� �
�1� �F�
; c0�e


 sinz��1, where �F�
; c0� is determined [16]
for a given value of 
 and c0 through use of the mass
conservation law given above. Note that if Eq. (1) is
linearized by setting the factor �1� c� to unity [13] then
the corresponding expression for the density fraction cL�z�
is easily found to be cL�z� � �c0=Î0�
�� exp��
 sinz�,
where Î0 is a modified Bessel function.

A self-diffraction experiment [17] was carried out by
passing the 532 nm beam from a frequency doubled,
continuous Nd : YVO4 laser through a Galilean telescope
and dielectric beam splitter and recombining the resulting
two laser beams in a 10 �m path length Pyrex cell to form
a temperature grating, as shown in Fig. 3. The beams were
focused to a spot roughly 2 mm in diameter at the front face
of the cell; the optical fringe spacing [10] of the grating
FIG. 3. Diagram of the experimental apparatus for (right) self-
diffraction measurements and (left) recording the absorption
profile in the cell with a CCD camera. The continuous 532 nm
laser was operated to give a power of approximately 200 mW at
the front surface of the cell.
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was 30 �m. The cell was filled with a suspension of 3 nm
Fe3O4 particles in dioctyl adipate with a solution density of
1:2 g=cm3, which absorbed approximately 80% of the
incident 532 nm beam.

The diffracted light pattern from the suspension was
recorded photographically on a white card placed approxi-
mately 1 m from the cell. As shown in Fig. 4, the two spots
from the undiffracted 532 nm beams seen immediately
after the laser was switched on were followed by the
appearance of a series of equally spaced diffracted light
spots [18], with the outermost spots appearing latest in
time and with the lowest intensity. The time dependences
of the intensities of the diffracted beams, recorded with a
photomultiplier and digitizing oscilloscope were fit to a
Fourier series decomposition of the density fraction profile
determined from numerical integration of Eq. (1) (with
diffusion included), giving a fitted value of 
 equal to
�3:6 and a mean value for the rate of change in the width
of the density fraction peak of 0:03 �m=s. When one of the
laser beams forming the grating was blocked so that only a
single beam illuminated the cell, the series of spots from
the diffracted beams disappeared over the course of a few
minutes, with the outermost spots disappearing most rap-
idly, eventually leaving only a single spot from the remain-
ing laser beam, the rate of the disappearance being
consistent with the highest rate of mass diffusion taking
place from the highest spatial harmonics of the density
fraction distribution [19].
FIG. 4. Top: diffracted light pattern from the laser irradiated
cell at five different times showing multiple order diffraction.
Since the grating was an absorption grating, the intensity of each
diffracted beam can be attributed to a distinct spatial harmonic of
the absorption profile. Bottom: CCD camera microphotographs
taken at (a) 0 s, (b) 1.8 s, (c) 3.0 s, and (d) 12 s after the laser
beam is turned on. The distance between the dark and light
regions is 30 �m.
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Experiments were also carried out using a microscope
equipped with a charge coupled device (CCD) camera to
view the time development of the absorption profile in the
cell directly. A 488 nm beam from a continuous Ar-Kr
mixed gas laser provided the illumination for the micro-
scope, which was equipped with narrowband filters to
reject the 532 nm beam but pass the 488 nm beam. The
absorption in the cell was recorded at periodic intervals
after the laser beams were turned on, giving a series of
images of the density profile in time. The value of 
 found
from fitting the data to a numerical integration of the
absorption profile was �2:7. The absorption profile [20]
recorded at long times was fit to both cN and cL using the
least squares procedure. The latter gave a poor fit to the
data, giving a value of the error in the least squares proce-
dure over 3 times that from a fit using cN, indicating a
significant contribution from the nonlinearity in Eq. (1) to
the particle distribution.

The origin of thermal diffusion shocks is exactly parallel
to that for fluid shocks: both arise from a nonlinearity of the
dependent variables in differential equations of motion for
the state variables. For thermal diffusion, the density frac-
tion, which constitutes the ‘‘state variable,’’ appears with a
quadratic dependence in its equation of motion, Eq. (1); for
fluid shocks, the pressure, temperature, density, and fluid
velocity are the state variables, with the velocity appearing
with a quadratic dependence in the conservation equations
for both energy and momentum. Of course, a thermal
diffusion shock is distinct in its character from a fluid
shock as it does not arise from classical Rankine-
Hugoniot hydrodynamics. An important difference in the
two kinds of shocks is that thermal diffusion depends on
the existence of an externally imposed temperature gra-
dient—there is no similar requirement for fluid shocks. A
further difference in the two shock phenomena is that in the
laboratory observation of the two kinds of shocks, the
dissipative force, ordinary mass diffusion in the thermal
diffusion shock, as opposed to viscous damping in a fluid
shock, is far more dominant in determining the overall
spatial profile of the thermal diffusion shock wave.
However strongly mass diffusion acts to broaden the fea-
tures of a thermal diffusion shock, the nonlinearity of
Eq. (1) dictates that the motion of the density fraction
wave is governed by the mathematics of a shock, and the
underlying motion of the components of the mixture is
described as a shock phenomenon; the degree to which the
shock fronts become easily observable in the laboratory
depends solely on the thermal diffusion factor 
, the
magnitude of which governs the dominance of thermal
diffusion over mass diffusion.
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