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We study the influence of asymmetric coupling strengths on the onset of light intensity oscillations in an
experimental system consisting of two semiconductor lasers cross coupled optoelectronically with a time
delay. We discover a scaling law that relates the amplitudes of oscillations and the coupling strengths.
These observations are in agreement with a theoretical model. These results could be applicable to the
population dynamics of other systems, such as the spread of disease in human populations coupled by
migration.
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FIG. 1. Schematic diagram of the cross-coupled laser experi-
ment with delayed negative optoelectronic feedback: LD1 and
LD2, laser diodes; PD1 and PD2, photodiodes; L1 and L2, optical
fibers; OSC, oscilloscope; V1 and V2, photodiode output volt-
ages; A1 and A2, electronic amplifiers; Attn1 and Attn2, variable
electronic attenuators. The thin lines indicate the optical signal
path through the fiber and the thick lines indicate the electronic
signal path through transmission cables.
One of the most challenging problems in the study of
dynamical systems is that of predicting instabilities and
discovering scaling laws that reveal universal character-
istics of systems that may initially appear to be very differ-
ent. An example of such an unexpected correspondence is
the connection between the system dynamics of epidemics
and lasers, originally introduced by Townes and co-
workers to develop an early model of maser dynamics
[1,2].

For the convenience of numerical simulation, we con-
sider the scaled equations for a single laser derived in [3]:

y0 � x�1� y�; x0 � �y� �x�a� by�; (1)

where y is the intensity fluctuation normalized about the
steady state level, x is the carrier number fluctuation scaled
with respect to the steady state level, and the derivatives are
taken with respect to the rescaled time [4]. � is the square
root of the ratio of the photon lifetime, �p, to the carrier
lifetime, �c. a and b are parameters defined in terms of the
pump rate, gain coefficient, and lifetimes �p and �c. These
equations are analogous to the scaled equations for a single
population model of epidemics [5].

We explore a system of two lasers with an optoelectronic
coupling scheme where the output intensity of each laser
modulates the pump current of the other laser. Passive
nonlinear optical media [6] and single laser oscillators
with instabilities induced by time-delayed feedback [7,8]
have been studied for at least two decades. Previous theo-
retical studies of globally coupled nonlinear oscillators
with time-delayed coupling [9–11] have examined their
dynamics and synchronization as a function of coupling
05=94(8)=088101(4)$23.00 08810
strength but do not include the relaxation dynamics of
populations with different time scales of decay.

In our experiment, the light emitted from each laser
diode (LD) passes through an optical fiber and is monitored
by a photodiode detector (PD) whose ac signal (V) is
amplified or attenuated and then negatively fed back to
the modulation input of the counterpart laser (Fig. 1). The
delay in the feedback loop can be easily adjusted by
inserting optical fibers of different lengths. The delay
time from one laser to the other is fixed at about �35 ns,
which is much longer than the characteristic relaxation
1-1  2005 The American Physical Society
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FIG. 2. Experimental observations and analysis. (a) Plot of in-
tensity oscillation amplitude measured by PD2, V2, versus cou-
pling strength d2 for different coupling strengths d1. Plus signs
show the amplitude for d1 � 0:71, squares for d1 � 0:80, circles
for d1 � 0:89, triangles for d1 � 1:00, diamonds for d1 � 1:12,
crosses for d1 � 1:26, and stars for d1 � 1:42. (b) Plot of
log10�coupling strength d2� vs log10�coupling strength d1� at
the emergence of oscillations. The line shows the best-fit linear
model. (c) Rescaled intensity amplitudes, V2=

�����

d1
p

, versus the
product of coupling strengths (d1d2), showing data collapse.
(d) Plot of the ratio of the rescaled amplitudes �V1=

�����

d2
p

�=
�V2=

�����

d1
p

� vs (d1d2).
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oscillation time of the laser dynamics, i.e., �2–3 ns. The
coupling strengths, d1 (from LD1 to LD2) and d2 (from
LD2 to LD1), can be controlled separately with variable
attenuators in the electronic signal path [12]. All the pa-
rameters for the coupled lasers are matched as closely as
possible.

Since a signal proportional to the light intensity fluctua-
tions of one laser is fed back to the modulation input of the
other laser, the coupling terms are added to the pump rates
of each laser. Denoting xi and yi (i � 1; 2) as the normal-
ized intensity fluctuations and the scaled carrier number
fluctuations, respectively, for each laser, the resulting
coupled scaled equations for two identical lasers are

y01 � x1�1� y1�;

x01 � �y1 � �x1�a� by1� � ��2y2�t� ��;

y02 � x2�1� y2�;

x02 � �y2 � �x2�a� by2� � ��1y1�t� ��:

(2)

The coupling constants �1 and �2 are proportional to the
coupling strengths d1 and d2 from the experiments.

The coupling strength d2 is increased for a fixed value of
the coupling strength d1 in experiments. For weak cou-
pling, both lasers show noisy fluctuations of their inten-
sities. As the coupling strength d2 is made stronger, the
emergence of sinusoidal oscillations of the laser outputs is
observed, with amplitude that grows with the coupling
strength. It is seen that the oscillating signals from each
laser are in phase and that the period of the oscillations is
double the delay time, i.e., �70 ns. Intuitively, when the
light intensities of both lasers stay high during half of the
oscillation period, the output of both will be reduced by the
feedback after the propagation time delay and stay low for
the rest of the oscillation. Then after another propagation
delay time has elapsed, the output of both will increase and
stay high. Therefore, in-phase oscillations with a period of
twice the time delay become stable.

In Fig. 2(a), the amplitude of the signal measured by
PD2 versus the coupling strength d2 is shown for different
values of the coupling strength d1 [13]. Note that even
when the coupling in one direction is weak, the system
starts oscillating if the coupling in the other direction is
strong enough. To obtain a quantitative relationship be-
tween the coupling strengths at the onset of the oscilla-
tions, we plotted values of log10�d1� and log10�d2� at the
emergence of the oscillations and found that these points
fall on a straight line, satisfying a linear relation given by

log 10�d1� � log10�d2� � log10�d1d2� � c; (3)

as shown in Fig. 2(b), where c� 0:1. A condition for the
onset of the oscillation, therefore, is that the product of d1
and d2 increases through a critical constant, i.e., d1d2 �
100:1 � 1:3, in our case.
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There arises the question of whether we can discover a
scaling relationship between the amplitude of the signals
and the product of the coupling strengths d1d2 of the two
lasers. When we plot [Fig. 2(c)] the rescaled amplitude of
oscillations V2=

�����

d1
p

versus (d1d2), the individual curves
corresponding to different coupling strengths d1 in
Fig. 2(a) collapse to a single curve. A similar collapse is
seen for V1=

�����

d2
p

vs (d1d2). Figure 2(d) shows the ratio of
rescaled amplitudes �V1=

�����

d2
p

�=�V2=
�����

d1
p

� vs (d1d2). When
the product (d1d2) increases beyond the critical value of
1.3, the ratio converges to a constant and oscillations
appear in both systems. This result implies that there exists,
to a good approximation, a single function that determines
the amplitudes of oscillations in both lasers for given
coupling strengths.

Numerical simulations and stability analysis were car-
ried out on the cross-coupled laser model using Eq. (2).
The order of the delay time was assumed to be comparable
to that of the carrier lifetime. The stability analysis applied
near the onset of the oscillations shows that in-phase
oscillations with a period of twice the delay time are one
of several possible stable solutions. At the onset point, the
product of coupling constants satisfies �1�2 � const.

Figure 3(a) shows the amplitude of normalized intensity
fluctuations y2 versus coupling constant �2 for different
1-2
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FIG. 3. Numerical computations. (a) Plot of amplitude of the
intensity fluctuations normalized to steady state level y2 versus
coupling constant �2 for different coupling constants �1. Plus
signs show the amplitude for �1 � 1:90, squares for �1 � 1:92,
circles for �1 � 1:94, triangles for �1 � 1:96, diamonds for
�1 � 1:98, crosses for �1 � 2:00, stars for �1 � 2:02, asterisks
for �1 � 2:04, and points for �1 � 2:06. (b) Plot of log10��2�
versus log10��1� at the emergence of oscillations. The line shows
the best-fit linear model. (c) Plot of rescaled variable y2=

������

�1

p

versus the product of the coupling constants �1�2, showing the
data collapse. The values of the parameters used are a � 2, b �
1, � �

������������

0:001
p

, and � � 30 in dimensionless units. (d) The same
as (c) with � � 150. The same marker types are used for same �1

values in (a), (c), and (d).
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values of coupling constant �1 in the numerical computa-
tions. The linear relationship between log10��2� and
log10��1� at the emergence of oscillations is shown in
Fig. 3(b). In Figs. 3(c) and 3(d), the rescaled amplitude is
plotted versus the product of the coupling constants, �1�2.
The scaling property of the cross-coupled system can be
seen very clearly in these figures, which display a data
collapse similar to Fig. 2(c), for two values of the delay
time, � � 30 and � � 150, in dimensionless time units. We
thus find that the scaling is preserved for a wide range of
ratios of the delay time to the relaxation oscillation period.
TABLE I. Correspondences between a single popul

Description of dynamical variables and parameters Ep

Slow dynamical variable S,
Fast dynamical variable I,
Source term �,
Nonlinear coupling �,
Governing equationsa dI=dt �

dS=dt �

aIn these equations, � is the death rate, ��1 is the average latent peri
and �p is the photon lifetime.

08810
The ratio of the rescaled amplitudes was found to be unity
in the simulations, i.e.,

y2
������

�1

p �
y1
������

�2

p � 1: (4)

The experimental observations of cross-coupled lasers
demonstrate more complex behavior as shown in
Fig. 2(d), since differences between the lasers and detec-
tors, as well as spontaneous emission noise levels, were not
accounted for by the model.

With the parameter values used for Fig. 3, the dynamics
observed are a combination of the relaxation oscillations
and the oscillations induced by delayed coupling. For
values of �1�2 larger than shown in the figure, the intensity
time series is no longer periodic and shows more complex
patterns.

The period of oscillations observed in the experiments is
sensitive to the bandwidth limitation of the electronic
components. When a low pass filter is incorporated into
the numerical model, we can observe different periodicities
of the oscillations that depend on the cutoff frequency of
the filter.

In summary, we have studied the influence of asymmet-
ric coupling strengths on the onset of light intensity oscil-
lations in an experimental system consisting of two
semiconductor lasers cross coupled optoelectronically
with a time delay. Oscillations occur if the product of the
coupling strengths is above a critical value. We have dis-
covered a scaling law that relates the amplitude of oscil-
lations and the product of coupling strengths. These
observations are consistent with the theoretical model
presented here.

These studies were motivated by the formal correspond-
ences between a class of epidemic models and a class of the
laser models [5], which are shown in Table I. What are the
epidemiological implications of our observations? The
inclusion of an effective delay in the transmission of dis-
ease between populations possibly explains some of the
interesting dynamical phenomena observed for disease
epidemics, including long interepidemic periods and in-
phase oscillations of incidence [17,18]. For example, more
rapid modes of transportation are thought to be important
ation epidemic model and a standard laser model.

idemic model [14,15] Laser model [16]

susceptible population N, carrier number
infective population I, photon number
susceptible input rate P, pump rate
contact rate g, gain coefficient
����� ����IS� ��� ��I dI=dt � gIN � ��1

p I
���S� �IS dN=dt � P� ��1

c N � gIN

od, ��1 is the average infectious period, �c is the carrier lifetime,
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in increasing the frequency of dengue epidemics in the late
twentieth century [19].
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