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A free energy density functional theory (DFT) for nonuniform polymeric mixtures is proposed based on
first order thermodynamic perturbation theory. The segment-density based free energy functional provides
an accuracy comparable to the numerically intensive polymeric DFTs while preserving the computational
simplicity of an atomic DFT. The presented applications for solutions and blends of branched and linear
polymers demonstrate the capability of the theory to capture the entropic and enthalpic effects governing

the microstructure.
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The success of a density functional theory (DFT) for
nonuniform polyatomic fluids rests with its choice of the
ideal system and approximations for the excess free energy
functional. Existing theories differ in the way the intra-
molecular interactions are split between the ideal and the
excess contributions, and, accordingly, the compromise
they offer between accuracy and computational expense.
Absorbing the intramolecular energetics in the ideal sys-
tem makes the theory less dependent on the excess term
which can then be approximated either empirically [1],
using bulk fluid structural information [2—-4], or directly
following from the functionals for atomic fluids [5,6].
However, this approach makes the theory computationally
so demanding that a solution either requires computer
simulations to solve for the exact ideal functional [2] or,
when written in terms of multipoint molecular density
p(R) (R = {r;} where r; is the position of bead i on the
chain) [1,5-8], results in mth-order implicit integral equa-
tions for an m-mer system. The system of these equations
requires a single chain simulation [7] or numerical tech-
niques [6,8] that are computationally even more intensive
than simulations [7]. Because of this mathematical chal-
lenge (and due to certain limitations), several problems of
practical interest remain beyond their reach. The treatment
of intramolecular interactions as an excess contribution
simplifies the computations, but the approximation avail-
able for the excess contribution [9] fails to describe sys-
tems beyond those with a slowly varying external field. It is
hence not applicable to strongly inhomogeneous systems
such as polymer melts at surfaces [10].

In this Letter, we present a DFT that offers accuracy
comparable to the molecular-density-based and simu-
lation-dependent theories while retaining the form and
computational simplicity of the atomic fluid DFTs (using
the noninteracting ideal state). We demonstrate these fea-
tures and the broad scope of the theory through applica-
tions of polymer adsorption in athermal and attractive
systems, including the first DFT application to surface
segregation in blends of chains of different architecture.
Considering the polyatomic system as a mixture of asso-
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ciating spheres (in the limit of complete association), the
free energy for the system is shown to follow naturally
from the association free energy functionals based on first
order thermodynamic perturbation theory (TPT1) [11]
used with success in the DFTs for atomic associating fluids
[12—-14]. The appeal of the theory further reflects through
its potential to address a wide range of applications (sur-
factants, bilayers, colloids, polyelectrolytes) within a com-
mon framework, and should thus interest chemical
physicists, material and biological scientists, and engineers
alike.

To describe a system of linear chains formed of m
spherical segments, consider an m component mixture of
associating spherical monomers that in the limit of infi-
nitely strong association would form the desired system of
chains. These monomers interact with a spherically sym-
metric intermolecular pair potential comprising a repulsive
core and an attractive tail, and consist of surface associa-
tion sites (two on each monomer that will make up the
middle of the chain and one on each terminal segment).
These association sites serve to bond successive segments
on a chain through an additional short-ranged, directional
square well interaction [12]. A similar approach is used in
the statistical associating fluid theory (SAFT) of Chapman
et al. [15] to describe the bulk state thermodynamics of
molecular fluids. Any number of the m segments can be of
the same type, but each unit is formally treated as a distinct
specie, tagged along the chain backbone. To form branched
chains, the segments at which the branch attaches to the
chain backbone will have additional association sites to
bond with the side groups. pa°(r) denotes the density of
the ath segment at r. The Helmholtz free energy of this
associating mixture can be written as

Achain — Aid + AAEX + AAassoc, (1)

where the incremental terms represent free energy changes
due to the excluded volume of the monomer segments and
association between the segments in the mixture. A'¢ is the
ideal gas free energy of the atomic mixture. AAFX can be
approximated in a weighted density formalism [16] using
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any of the various accurate models available [17-19]. We
have used Rosenfeld’s functional [19] which is naturally
derived for asymmetric mixtures. Following TPT1, A A5
can be written as [12]
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The summations, from left to right, are over the chain
segments and the set of association sites on segment «,
respectively. x4 (r) is the fraction of a segments at r, not
bonded at the association site A [12], which in the limit of
complete association, would vanish throughout the system.
In this limiting condition, we introduce the approximation
X% (ry) = x4 (ry), which essentially means that the extent
of bonding at the sites on the adjacent segments &’ and «
approach the limit of complete bonding at the same rate.
This leads to the following simplified expression for x4 (r)
[12]

1 — xi(r))
fdrzA‘m/(rl, rz)PZe/g(l'Q),

where A (r), 1)) = v (1), 1) F*¥ (r), 1)) K.
y®@(r;, 1) is the cavity correlation function between the
two segments « and «' in the reference fluid and K is a
constant geometric factor accounting for the orientation of
the two segments on bonding as given in [12—14]. For the
association Mayer function [12-14], F*%(r;,r,) =
{exp[ B2 (ry, ry)] — 1}, we can write 22 (r), 1,) = gy —
v« (v, 1), where &, — oo in the limit of complete asso-
ciation and v2%,(r|, ;) is the energy of the bond, e.g.,
harmonic bonding potential, between the two segments.
Substituting in Eq. (2) and forcing the limit x4 (r) — 0, as
g9 — o0 yields
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where the constant terms Beg, and InK are dropped since
they do not influence the phase behavior of the fully
formed chains.

Since the reference fluid cavity correlation function for
an inhomogeneous system is not known [8], we replace it
by its bulk counterpart evaluated at a ‘“‘coarse-grained
density”  pat(r), ie., y*(r,r,[p% ..., pntl) =
ye@ DUk (), L., ot (ry)]). The results we present
here are from the simplest coarse-graining approximation,
Le., ﬁi’?g(rl) = ﬁ flrl—r2|<o-a dr2p§g(r2)’ for a=
1,..., m.

Figure 1 shows the average site density distribution of a
freely jointed hard 20-mer (exp[—BvE%,(r;, ;)] =

‘S(lz';(r;icl;,‘;m/)) near a hard surface, for two different pack-
ing fractions. The theory, in quantitative agreement with
simulations, accurately captures the entropic (chain deple-
tion) and energetic (chain enhancement) effects at low and
high packing fractions, respectively. It is noteworthy that
the calculations involve solving a set of first order integral
equations regardless of the chain length. This is a signifi-
cant simplification over the polymer DFTs based on mo-
lecular densities that entail solving coupled integral
equations of order m (chain length) for calculations similar
to those corresponding to Fig. 1. Consequently, these cal-
culations become prohibitively expensive for higher chain
lengths and for mixtures. The calculations from the present
theory, on the other hand, are simple enough to be solved
satisfactorily using elementary numerical techniques com-
monly used in atomic DFTs. Even with the simple Picard-
type iteration, as described in [12], the computational cost
and convergence characteristics were comparable to those
of our earlier DF works on associating atomic fluids
[12,14].

The theory can, in general, solve for the density distri-
bution of each segment in the chain. However, this is
usually not necessary, and it suffices to determine the end
and middle segment distributions. Figure 2 shows these
distributions for a flexible hard 20-mer. Similar predictions
for athermal blends and solutions for a range of conditions
are also found to be in agreement with simulations [20].

These athermal cases establish the capability of the
theory to capture the packing effects due to chain connec-
tivity and, hence, the accuracy of the chain functional. The
impact of the molecular topological differences in a blend
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FIG. 1. Average segment-density profiles for a flexible hard

20-mer near a hard wall for packing fractions (a) 0.1 (filled
circles, corresponding to the right axis), and (b) 0.45 (open
circles, left axis). Lines are the theory predictions, and symbols
are simulation data of Yethiraj et al. [27].
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FIG. 2. End (filled circles and solid line) and middle (open
circles and broken line) segment distribution in a flexible hard
20-mer chain near a hard wall for packing fraction 0.3. Lines are
theory predictions and symbols are simulation data of Yethiraj
et al. [27]. Error bars are shown for simulation results.

on the fluid structure has been studied through experiments
[21,22] and simulations [23]; however, no theory has yet
addressed it. In Fig. 3, we present the application of our
theory for surface segregation in blends of linear and
branched chains. In the athermal blend (inset), the entropic
penalty keeps the branched chains away from the surface.
In the presence of attraction between the polymer seg-
ments, the effective packing of the linear molecules against
each other in the bulk leads to a stronger depletion of these
chains at the surface. The theory captures this crossover
from an entropy driven to an enthalpy driven segregation
in agreement with the simulations. The theoretical calcu-
lations use the same model system (shown schematically
in Fig. 3) and the site-site intermolecular potential as the
simulations [23], Bu; =00 (r<o)= —sff[a'e*"(’/"'*l)/
r—e “/2(c<r<20)=0(r>20), where k =2.5 is
the inverse range of shifted Yukawa potential. However,
the intermolecular correlations accounted for in the simu-
lations are ignored in the mean field approximation com-
monly used to treat attraction in the theory. This leads to
different bulk conditions from the theory and the simula-
tions, despite identical potential models. A comparison
with simulations in the inhomogeneous region can be
made only after the consistency of the bulk conditions
between the theory and the simulations is ensured. We
ascertain this by adjusting the attraction energy parameters
for the two species, &, to match the corresponding partial
pressures from the theory and the simulations. Once the
bulk conditions are specified, the theory accurately maps
out the structure of the branched and the linear species near
the surface. It must be emphasized that the chain functional
Eq. (4) remains unchanged in all of the above calculations.

The simplicity of the theory results from the exclusion of
bonding constraints from the ideal system, obviating the
use of multipoint density functions [1,6,7] or the intra-
molecular structure function [2] to describe it. These con-
straints enter through the chain functional Eq. (4), so that
the free energy of an ideal heteronuclear tangent chain is
given by

< g g g
= dr, p2(r)| Inpse(r;) — 1 + ——
;lf 1P ( 1)|: P (ry) ;( 3
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Notice that TPT1 automatically accounts for the connec-
tivity between consecutive segments, a constraint that is
normally forced through the ideal functionals in the exist-
ing theories [1,2,6,7]. This result is exact for a system of
dimers, while the formal divergence from the exact free
energy of an ideal chain [1] (obtained in terms of multi-
point molecular density) at higher degrees of polymeriza-
tion is due to the approximation introduced, which serves
to decouple the mth-order integrals of the exact formalism.
The resulting numerical difference, however, is insignifi-
cant even at relatively low densities ([as seen in the low
density profiles in Fig. 1(a), compared to Fig. 4(a) of
Ref. [6] which uses the exact ideal chain functional]. In
fact, our theory is in better agreement with simulations
than some of the theories using the exact ideal chain free
energy (Figs. 3 and 5 of Ref. [8(c)]), due to better approx-
imations for the excluded volume effects. At high packing
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FIG. 3. Surface induced segregation of linear (open symbols
and fine lines) and branched (filled symbols and bold lines) 19-
mers in attractive and athermal (inset) blends near an athermal
surface. Lines are theory predictions and symbols are simulation
data of Yethiraj [23]. The topology of the two species is also
shown schematically.
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fractions, where the effect of single chain structure be-
comes insignificant (Flory’s ideality principle [24]), the
influence of this approximation fades away and the accu-
racy of the overall functional improves further. Polymer
melts and high density polymer solutions thus do not
justify the inconvenience of the exact formal treatment of
the ideal chain functional.

In conclusion, we have derived a DFT to predict the
structure and the thermodynamics of inhomogeneous pol-
ymeric solutions and blends. The theory provides accuracy
comparable to the numerically intensive polymer DFTs,
while retaining the simple form and the computational
economy of DFTs for atomic fluids. Presented results
project the theory as a thermodynamically consistent, ver-
satile, and accurate framework to provide a molecular level
understanding of a diverse set of systems such as surfac-
tants, copolymers, colloids, etc. Also impressive is the
feasibility of extensions to include additional interactions
such as hydrogen bonding [12—14], polar, and electrostatic
interactions within the same formalism. Their contribu-
tions to the free energy can be added as perturbations in
Eq. (1) much the same way that has found success with
SAFT among various homogeneous systems [25].
Recognizing that the structure of a homogeneous fluid
can be obtained from the density distribution in the exter-
nal field introduced by a single, arbitrarily chosen fluid
particle in the system, as suggested by Percus [26], this
theory can be used to determine the intermolecular and the
intramolecular correlation functions of the bulk poly-
atomic systems.

The authors are indebted to Professor Arun Yethiraj for
providing them with his simulation data, and also grate-
fully acknowledge the financial support of the Robert A.
Welch Foundation.
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