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Transport Spectroscopy of Kondo Quantum Dots Coupled by RKKY Interaction
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We develop the theory of conductance of a quantum dot which carries a spin and is coupled via RKKY
interaction to another spin-carrying quantum dot. The found dependence of the differential conductance
on the bias and magnetic field at a fixed RKKY interaction strength may allow one to distinguish between
the possible ground states of the system. Transitions between the ground states are achieved by tuning the
RKKY interaction, and the nature of these transitions can be extracted from the temperature dependence
of the linear conductance. The feasibility of the corresponding measurements is evidenced by recent
experiments by Craig et al.
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FIG. 1. The exchange interaction of S � 1=2 spins of dots S1
and S2 with the 2DEG results in the Kondo effect. The connec-
tion by weak contacts C1 and C2 to the bigger open dotM creates
the exchange (RKKY) interaction between the two spins. The
current I as a function of bias V is measured between source (s)
and drain (d) contacts.
The exchange interaction between a localized electron
and itinerant electrons of a Fermi sea leads to the Kondo
effect [1]. Recently, the Kondo effect was observed in the
quantum dot setting, where it causes an anomalously high
conductance at low temperatures [2]. The itinerant elec-
trons not only screen an impurity spin, leading to the
Kondo effect, but also give rise to the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction between localized
spins [3]. The interplay between the Kondo screening
and RKKY interaction remains at the focus of the inves-
tigation of strongly correlated electron systems and may
play an important role in the heavy fermion metals [4].
This interplay is not trivial even in the minimal system
allowing it, which consists of two localized spins ‘‘im-
bedded’’ into an electron Fermi sea [5].

Until recently, such a two-spin system was the subject of
theoretical investigations only. The quest for practical
implementation of quantum computing ideas has led to
interest in the physics of spin devices. In this context,
transport properties of two-spin-carrying quantum dots,
coupled with each other by RKKY interaction, were
studied experimentally [6] in a device schematically shown
in Fig. 1. The authors of Ref. [6] were able to see the effect
of RKKY interaction between the spins by monitoring the
Kondo-enhanced conductance through one of the dots.
Sufficiently strong RKKY interaction locks the localized
spins into a singlet or triplet state and destroys or weakens
the Kondo effect, thus liquidating the enhancement of the
conductance. The experiments[6] demonstrated the fact of
spin coupling and detailed quantitative measurements
seem to be within the reach of experimental capabilities.
Further experiments will also bring an exciting prospect of
an experimental investigation of the interplay between
RKKY interaction and Kondo effect in a controllable
setting.

In this Letter we develop a theory of conductance spec-
troscopy of the spin states of two s � 1=2 quantum dots
coupled by the RKKY interaction. We start with a charac-
terization of the ground state and low-energy excitation
spectrum of the many-body system formed by the dots and
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itinerant electrons of a two-dimensional electron gas
(2DEG). Next we concentrate on the case of a strong
RKKY interaction, allowing us to treat the Kondo effect
perturbatively and elucidate the main features of the I-V
characteristic of the device sketched in Fig. 1. The mea-
surement of differential conductance G�V� � dI=dV en-
ables one to distinguish between the singlet and triplet
ground states of the two localized spins. We then consider
the crossover between the singlet and triplet states on the
linear conductance G0 � G�V � 0�. We identify signa-
tures in the linear conductance which may allow us to
distinguish the singlet-triplet crossover from a quantum
phase transition between these two states. Finally, we
investigate the sensitivity of the RKKY interaction to an
applied magnetic flux and determine the characteristic flux
needed to change the sign of the RKKY coupling.

The ground state of two localized spins interacting with
each other and with a Fermi sea of itinerant electrons
depends sensitively on the relations between the corre-
sponding interaction constants. Under very special condi-
tions,[7] requiring fine-tuning of the system parameters, a
non-Fermi-liquid state of the system may be reached.
Away from these special points in the parameter space,
the low-energy properties of the system are that of a Fermi
liquid, and we will concentrate on this generic case. The
ground state of the full system, including the localized and
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FIG. 2. (a) Linear conductance G0 as a function of the RKKY
coupling constant J12 at T � 0. The crossover from the triplet
state J12 < 0 at jJ12j 
 max�fTK�g to a singlet state J12 

max�fTK�g takes place at jJ12j & max�fTK�g and results in
the decrease of G0 from a value close to the unitary limit GU

to a much smaller value controlled by the elastic cotunneling.
(b), (c) Differential conductance G�V� at T � 0 and strong
RKKY coupling, jJ12j 
 max�fTK�g. Solid lines: the second-
order in exchange J1 result; dashed lines: schematic representa-
tion of the enhancement of G�V� resulting from higher order in
J1 calculation.
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itinerant spins, is a singlet. Variation of the exchange
couplings leads to a number of crossovers between differ-
ent possible singlet states. The simplest Hamiltonian suffi-
cient for describing the singlet states is

H � J1ŝ1Ŝ1 � J2ŝ2Ŝ2 � J12Ŝ1Ŝ2: (1)

Here S1 and S2 are the spins of the two dots (S1;2 � 1=2),
and s� �

P
��0 y

�����0 ��0 are the local spin densities of
itinerant electrons. Electron operators  �� represent elec-
tron states [8] coupled to a localized spin in dot �.

First we note that at J12 � 0 the Hamiltonian Eq. (1)
represents two independent s � 1=2 Kondo systems char-
acterized by Kondo temperatures TK� / exp�	1=�J��,
where � is the band density of states at the Fermi level,
� � 1; 2. At T � 0, each of the two local spins is fully
screened by the corresponding modes of the itinerant elec-
trons. In these conditions, each of the dots provides a
Kondo resonance for electron tunneling [8]. The indepen-
dent screening, giving rise to resonances in tunneling
through each of the dots, remains in effect for a sufficiently
small interdot coupling. At stronger antiferromagnetic
coupling, J12 
 max�fTK�g, the two local spins form a
singlet of its own, and the Kondo resonances for the
itinerant electrons vanish. In the case of ferromagnetic
(J12 < 0) coupling, the two localized spins form a triplet,
which is fully screened by the itinerant electrons interact-
ing with the two dots, and the Kondo resonances for
tunneling through each of the dots persist.

The above consideration shows that the zero-
temperature linear conductance changes from a large
value (induced by the Kondo resonance) at �	J12� 

max�fTK�g, to a small value at J12 
 max�fTK�g. In the
oversimplified representation of the device sketched in
Fig. 1 by the Hamiltonian (1), these asymptotes are

GU �
4e2

� 
h
GsGd

�Gs �Gd�
2 (2)

and G � 0, respectively (here Gs and Gd are the conduc-
tances of the junctions connecting the dot with the source
and drain leads, respectively). In the special case [9] of
TK2 � 0, the transition between the two asymptotes is a
jump at J12 � 0 between two Fermi-liquid states. If TK2 is
finite, the transition shifts to J12 
 TK1= ln�TK1=TK2� for
TK2 � TK1, and remains at positive J12 & max�fTK�g.
This transition occurs via passing through a non-Fermi-
liquid state, which belongs to the same universality class
as the two-channel s � 1=2 Kondo problem [10]. The
existence of such a non-Fermi-liquid state hinges on a
special particle-hole symmetry [7] of the Hamiltonian
(1). However, in the case of generic parameters of a
quantum dot, the Hamiltonian of the system also includes
other terms (e.g., potential scattering terms leading to the
elastic cotunneling) which violate the required symmetry.
In this case the quantum phase transition between the two
Fermi liquids is replaced by a smooth crossover [11,12].
The zero-temperature conductance varies smoothly and
08680
monotonically with J12, as shown by the solid line in
Fig. 2(a) [13].

In the absence of the Zeeman splitting, the energy of
exchange interaction J12 sets the threshold for the inelastic
electron scattering, accompanied by a change of the spin
state of two dots. Far above the threshold, jeVj 
 jJ12j, the
processes with flip of the spin S1 are allowed and, in the
leading order, the differential conductance G�V� coincides
with the conductance of a single-quantum-dot device:

G�V� �
3

4

GU

ln2jeV=TK1j
: (3)

Here factor 3=4 corresponds to the square of the operator of
spin S � 1=2, and the logarithmic term represents the
Kondo renormalization of the exchange interaction in the
weak coupling limit, eV 
 TK1.

Conductance Eq. (3) arises from the scattering ampli-
tude evaluated to the lowest order perturbation theory in
the renormalized interaction constant. Within this accu-
racy, conductance has a sharp step at jeVj � jJ12j. The
height of the step depends on the sign of J12, i.e., on
whether the coupling of the two localized spins is ferro-
magnetic or antiferromagnetic. In the case of ferro-
magnetic coupling, J12 < 0, conductance G�V� is re-
duced by factor 3=2 from the value given by Eq. (3) if
the bias is lowered just below the threshold jeVj � 	J12.
The renormalization group analysis of the Hamiltonian (1)
shows that after the reduction at jeVj � 	J12, the differ-
ential conductance again monotonically increases as bias V
decreases:

G�V� �
2GU

ln2jeV=TKtj
: (4)
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Here factor 2 corresponds to the square of S � 1 spin
operator, and the logarithmic increase of G�V� reflects
the S � 1 Kondo effect with the triplet Kondo temperature
TKt. In case TK2 � TK1 � �	J12�, an evaluation of the
first logarithmic correction to the conductance gives TKt �
T2
K1=jJ12j; i.e., at large jJ12j the triplet Kondo temperature

is much lower than max�fTK�g. For the antiferromagnetic
coupling between the two localized spins, the particle-hole
symmetric Hamiltonian (1) yields zero conductance [13].

Magnetic fields may shift and split the step in conduc-
tance G�V�. The proper generalization of Eq. (3) to include
the Zeeman splitting g�B by magnetic field B reads

G�V� �
f1�J12; V; B�GU

ln2�maxfg�B; eVg=TK1�
; (5)

with a steplike function f1, presented in Fig. 3. At g�B

jJ12j; jeVj, the localized spins are aligned along the field
and f1 � 1=4. If J12 < 0, Eq. (5) must be supplemented by

condition maxfg�B; eVg *
��������������
T2
K1J12

3
q

; otherwise a S � 1

Kondo effect develops, see Eq. (4).
To assess the applicability of the above results obtained

in the Born approximation for the electron amplitude of
tunneling through the dot, one may evaluate the next-
order correction to that amplitude. This correction diverges
logarithmically at jeVj � jJ12j, similar to the divergence
occurring in the scattering off a single localized spin in the
presence of Zeeman splitting [14]. The divergence is cut
off by either the temperature [14] or the relaxation rate of
the localized spins in the out-of-equilibrium conditions
[15]. As the result, steps in the differential conductance,
obtained within the Born approximation, become asym-
metric maxima of a finite width. Here we present an
estimate for the correction to Eq. (4) only for the case of
strongly asymmetric setup, e.g., Gs=Gd � 1, and assum-
ing the lowest temperature, which allows for the sharpest
steps in the differential conductance. In these conditions,
the spin relaxation rate [16] responsible for the cutoff of the
divergency is of the order of 1=�s 
 jJ12j=�ln

2�jJ12j=TK1��.
The widths of the features replacing steps in the differential
conductance are of the order of 
1=�s, and the amplitudes
of the corrections to steps described by Eq. (5) are
FIG. 3. The contour plot of f1�J12; V; B� is shown in the bias
(V)—magnetic field (B) plane. Function f1 determines the
differential conductance G�V� at strong RKKY coupling jJ12j 

max�fTK�g, see Eq. (5).
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�G

GU

ln3�jJ12j=TK1�
ln
�
ln2

jJ12j
TK1

�
: (6)

The amplitude of the correction is small if jJ12j 
 TK1,
and the main effect of the higher-order terms of the per-
turbation theory is the smearing of the steps. In order to
determine the nature of the ground state (singlet or triplet)
by conductance measurements in the presence of magnetic
field, the Zeeman splitting energy must exceed 1=�s of the
features in the differential conductance. The overall bias
dependence of the differential conductance at B � 0 is
sketched in Fig. 2(b) and 2(c).

Linear conductance G0 of the dot S1 is determined by
the scattering T matrix T1�"� for " & T:

G0�T; J12� � GU

Z ImT1�"�d"

4Tcosh2�"=2T�
: (7)

In the unitary limit, T1�0� � i. For "
 T * max�fTK�g
we may use the Born approximation [17]:

ImT1�"� � �2J 2
"

Z
K�"	 "0�

1� e"=T

1� e"
0=T
d"0; (8)

where K�!� � 2�
P
""0#"jh"

0jS1j"ij
2��!� E" 	 E"0 � is

calculated with respect to the exact quantum states j"i
of the system of two localized spins, E" is the energy of
state j"i, and #" is the density matrix #" / exp�	E"=T�.
The exchange constant J " is logarithmically renormalized
by the Kondo effect: J " � 1=�� lnE=TK1� with E �
maxf"; T; jJ12jg.

Within Born approximation, the linear conductance de-
pends on J12 only through the ratio J12=T,

G0 �
3

2�3� eJ12=T�

�
1�

J12=T

1	 e	J12=T

�
GU

ln2�T=TK1�
: (9)

The dependence ofG0�T; J12� on J12 has a maximum in the
region jJ12j & T and conductance is higher on the triplet
side of the crossover [18]. (Note, however, that the expo-
nentially small value of conductance far in the singlet
region is an artifact of our model [13].) At negative J12,
as temperature T decreases, the conductance G0�T; J12�
grows and reaches GU at T & T2

K1=jJ12j. The shape of
the G0�T; J12� vs J12 eventually approaches the step
sketched in Fig. 2(a). In the generic case of the zero-
temperature crossover between the two Fermi-liquid
states, the width of the step saturates and remains finite
in the limit T ! 0. This width is not universal and de-
pends on the terms in the exact Hamiltonian beyond the
approximation of Eq. (1). If, however, the parameters of
the system are tuned properly, and the variation of J12 takes
the system through the non-Fermi-liquid state at the certain
value of J12, then the step width decreases with lowering
the temperature as

����
T

p
; see, e.g., [19]. Finally, the limit

J2 � 0 within the model Eq. (1) corresponds to a sharp
transition between two Fermi-liquid states at T � 0. A
straightforward analysis, similar to Ref. [9], yields the
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estimate TK1= ln�TK1=T� for the transition width at finite
temperature.

The contact interaction of the localized spins with the
itinerant electrons of dotM at points C1 and C2 (see Fig. 1)
results in the indirect exchange interaction between the
localized spins. Unlike the textbook RKKY interaction
facilitated by freely propagating electrons [3], here mag-
nitude and sign of J12 are random, reflecting the chaotic
electron motion in the dot M. Roughly, the typical value of
J12 is 
�1JC1

JC2
, and the typical magnetic flux �c needed

for changing J12 substantially is 
�0. Here JC1;2
are the

dimensionless constants of the contact exchange inter-
action at points C1;2; �1 � ��A�	1 is the mean level spac-
ing of one-electron energy levels in dot M, � is the
density of states of the 2DEG, A is the area of the dot M,
and �0 � hc=e.

The RKKY coupling J12 may be expressed in terms of
the scattering matrix S1;2 of an electron propagating from
contact C1 to contact C2:

J12 � 	2JC1
JC2

Z d"
�
n�"�ImfS2;1�"�S1;2�"�g: (10)

Here n�"� is the Fermi function and we assumed that elec-
tron propagation in M is spin independent: S1�;2�0 �"� �
���0S1;2�"�. Within the random matrix theory, it is related
in a standard way [20] to the one-electron Hamiltonian Ĥ
of dot M. The ensemble average hJ12i � 0, and we calcu-
late the correlation function [21] of the RKKY constant

J12��� over realizations of matrix Ĥ ��� at two values of
magnetic flux �1;2 threading dot M,

hJ12��1�J12��2�i �
�2
1

16�2 J
2
C1
J2C2

ln
�
E2
Th

E�E	

�
: (11)

Here E� � (esc � )�1��1 ��2�
2=�2

0; numerical factor
)
 1 depends on geometry [20,22]; (esc � N�1=�2�� is
the electron escape rate from the middle dot into 2DEG
through N open channels; ETh � vF=

����
A

p
is the Thouless

energy; and vF is the Fermi velocity. At T * E�, E�

should be replaced by T.
Equation (11) shows that the RKKY constant is sym-

metric with respect to the inversion of magnetic flux � !

	�, and yields the correlation flux value �J12
c 
�0. The

flux �J12
c is much larger than the correlation flux �G

c 
�������������������
(esc=ETh

p
�0 for the conductance of an open quantum dot

[20]. The difference between �J12
c and �G

c occurs because
the contribution to J12 originates from energy levels within
the spectrum ‘‘window’’ ETh, whereas the conductance of a
dot is usually determined by levels within much shorter
energy interval (esc.

In conclusion, the presented results may help one to de-
termine the spin states of quantum dots coupled by RKKY
interaction from transport measurements; see Eq. (5) and
Fig. 3. The evolution of the linear conductance with the
variation of RKKY interaction constant allows one to
08680
follow the transitions between various ground states of
the system. Finally, we found that the magnetic field flux
needed for variation of the RKKY coupling is of the order
of flux quantum �0.
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