
PRL 94, 086803 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
4 MARCH 2005
Fractional Quantum Hall States of Atoms in Optical Lattices
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We describe a method to create fractional quantum Hall states of atoms confined in optical lattices. We
show that the dynamics of the atoms in the lattice is analogous to the motion of a charged particle in a
magnetic field if an oscillating quadrupole potential is applied together with a periodic modulation of the
tunneling between lattice sites. In a suitable parameter regime the ground state in the lattice is of the
fractional quantum Hall type, and we show how these states can be reached by melting a Mott-insulator
state in a superlattice potential. Finally, we discuss techniques to observe these strongly correlated states.
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Ultracold atomic gases [1] provide a unique access to
quantum many-body systems with well understood and
controllable interactions. Whereas most of the experiments
in this field have been carried out in the regime of weak
interactions, the recent achievements involving Feshbach
resonances [2] and the realization of a Mott-insulator state
of atoms in optical lattices [3,4] enters into the regime of
strong interaction with a richer and more complex many-
body dynamics. At the same time, a realization of strongly
correlated states of fractional quantum Hall type [5] has
recently been suggested in rotating cold atomic gases [6].
However, weak interaction between the particles (and cor-
respondingly small gap in the excitation spectrum) re-
quired precision on trap rotation, and finite temperature
effects make these proposals difficult to realize experimen-
tally. In this Letter we present a novel method that uses
atoms in optical lattices to create states of the fractional
quantum Hall type. Since the interactions of atoms local-
ized in the lattices are strongly enhanced compared to the
interaction of atoms in free space, these states are charac-
terized by large energy gaps.

The fractional quantum Hall effect occurs for electrons
confined to two dimensions (the xy plane) in a strong
magnetic field. In the simplest form the effect occurs if
the number of magnetic fluxes N� is an integer m times the
number of particles N� � mN. At this magnetic field the
ground state of the system is separated from all other states
by an energy gap and is well described by the Laughlin
wave function [7]
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where z � x� iy, and where we have assumed the sym-
metric gauge and suitable magnetic units. Because of the
Pauli principle, only the states with odd (even) m are
applicable to fermions (bosons). In this Letter for simplic-
ity we consider only bosons and m � 2.
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Below we describe a method to produce the states (1) for
ultracold atoms in an optical lattice. In this system the
states are protected by an excitation gap controlled by
the tunneling energy, which for typical parameters is
much larger than the energy scale in the magnetic traps
considered previously [6]. The larger energy gap is a clear
advantage experimentally because the state will be more
robust to external perturbations. Furthermore, experiments
with periodically modulated quantum Hall probes [8] and
tunnel coupled superconducting islands [9] are trying to
reach the regime studied here, and the extension of the
quantum Hall physics to a lattice system is therefore an
interesting nontrivial problem in its own right. For non-
interacting particles the energy spectrum on the lattice (the
so-called Hofstadter butterfly [10]) is very different from
that of Landau levels. We nevertheless show that in a
certain parameter regime, the Laughlin state provides a
reasonable description for the resulting many-body physics
of the strongly interacting system.

We consider atoms trapped in a square two-dimensional
optical lattice. If the atoms in the lattice are restricted to the
lowest Bloch band the system can be described by a Bose-
Hubbard Hamiltonian [11]

H � �J
X
fj;kg

�âyj âk � âyk âj� �U
X
j

nj�nj � 1�; (2)

where the first sum is over neighboring sites j and k, âj and
nj � âyj âj are the boson annihilation and number opera-
tors on site j, J is the tunneling amplitude, andU is the on-
site interaction energy. The individual lattice sites below
are specified by a pair of integers x and y.

An essential ingredient in our approach is an effective
magnetic field for neutral atoms in optical lattices.
Different approaches which attain this goal have already
been proposed [12], but here we present an alternative
procedure that may simplify the experimental realization.
Our procedure involves a combination of a time-varying
quadrupolar potential V�t� � Vqp sin�!t�x̂ ŷ , and a modu-
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lation of the tunneling in time. The tunneling between
neighboring sites decreases exponentially with the inten-
sity of the lasers creating the lattice, whereas the shape of
the wave packet (the Wannier functions) has a much
weaker dependence [11]. By varying the laser intensity,
the tunneling can therefore be varied rapidly in time.
Assume that the tunneling in the x direction is turned on
for a short period around t � t0n (n � 0; 1; 2; . . . ) and that
the tunneling in the y direction is turned on for a short
period around t � t0�n� 1=2�, where t0 � 2�=! is the
period of the oscillation [see Fig. 1(a)]. As illustrated by
the simplified picture in Figs. 1(b) and 1(c), such a time
sequence creates an effective Lorentz force (magnetic
field) in the lattice. This can be shown mathematically by
assuming that the tunneling is present only in a very short
time interval �. With a periodic oscillation in the
Hamiltonian the time evolution operator after m periods
can be written as a product of the evolution in each period
U�t � mt0� � U�t � t0�m. From the general solution to
the Schrödinger equation U � T exp
�i

R
dt0H�t0�= �h�,

where T denotes time ordering, we find the total time
evolution operator (neglecting for now the interaction be-
tween the particles)

U
�
t�

m2�
!

�
� �e�i�Tx=2�he2iVqpx̂ ŷ =!�he�i�Ty=�h

 e�2iVqpx̂ ŷ =!�he�i�Tx=2�h�m; (3)

where Tx and Ty are the kinetic energy operators describing
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FIG. 1. (a) One period of the sequence used to create an
effective magnetic field. The time evolution of the quadrupole
potential is shown by the full curve, and the dashed and the
dotted lines indicate the tunneling in the x and the y directions.
For illustration the shown evolution of the tunneling is obtained
from a sinusoidal variation of the lattice potential between 5 and
40 recoil energies [11]. (b),(c) Physical explanation of the
procedure. (b) Tunneling in the x direction is followed by a
positive potential in the first and third quadrant (signs in the
figure), and hence atoms will experience a lower potential by
moving in the direction of the dashed arrows. (c) Same as (b) but
with tunneling in the y direction and opposite sign of the
potential. When combined, the dashed lines in (b) and (c)
make a circular cyclotron motion.
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tunneling in the x and y directions, respectively, e.g., Tx �

�J
P
âyx�1;yâx;y � H:c: By using exp�i2��x̂ ŷ� 

âyx;y�1âx;y exp��i2��x̂ ŷ� � âyx;y�1âx;y exp�i2��x� with
� � Vqp=� �h!, (3) can be reduced to the time evolution
U � exp��iHefft= �h� from an effective Hamiltonian

Heff � �J
X
x;y

âyx�1;yâx;y � âyx;y�1âx;ye
i2��x � H:c:; (4)

where the effective tunneling strength is J � J�=t0, and
where we have omitted terms of order J�J=!�2.
Equation (4) describes the behavior of a charged particle
on a lattice with a magnetic flux ��0 going through each
unit cell [10,13], and hence the procedure introduces an
effective magnetic field in the lattice. The gauge in Eq. (4)
(Landau gauge) is determined by the time we terminate the
sequence in Fig. 1(a) and a different gauge would appear if
we terminated at a different time.

We now turn to the fractional quantum Hall effect for
strongly interacting atoms. In the limit of small � and a
small number of atoms per lattice site the system reduces to
the continuum limit of particles in a magnetic field with
short range interactions. If the interaction is repulsive, the
Laughlin wave function (1) is the absolute ground state of
the system when N� � mN [14]. This limit corresponds to
a very low density gas with a small energy gap between the
ground and the excited states (see below). To extend this
analysis to nonvanishing � we have performed a direct
numerical diagonalization of the Hamiltonian in Eq. (4) for
a small number of hard-core bosons; i.e., corresponding to
the limit J � U, we diagonalize the Hamiltonian in Eq. (4)
excluding from the Hilbert space all states with more than
one boson at each site. In different contexts, similar prob-
lems were considered in Ref. [15].

To investigate the effect of finite � we fix the number of
fluxes and particles so that N� � 2N and vary � by chang-
ing the size of the lattice. (The sizes in the x and the y
directions are the same or different by unity.) In Fig. 2(a)
we show the overlap of the ground state wave function
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FIG. 2. (a) Overlap of the ground state wave function with the
Laughlin wave function (1). (b) Energy gap �E to the lowest
excited state. In the figure we have fixed the number of particles
and fluxes (N� � 2N) and vary the flux per unit cell � by
varying the size of the lattice. The shown results are for N �
2 (�), N � 3 (�), N � 4 (), and N � 5 (�).
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from the diagonalization with the Laughlin wave function
(1). We assume periodic boundary conditions to represent
the bulk properties of a large optical lattice. For the situ-
ation considered here (m � 2) the combination of periodic
boundary conditions and magnetic field gives rise to a
twofold degeneracy of the ground state in the continuum
limit (� � 1), where the two ground states differ only by
their center of mass wave functions [16]. The symmetry
analysis leading to this degeneracy does not apply in the
presence of the lattice [17]. For all points in Fig. 2 (except
the point N � 5, � � 1=3), however, the diagonalization
gives two almost degenerate ground states which are sepa-
rated from the excited states [see Fig. 3(a) at V0 � 0]. The
periodic generalization of the Laughlin wave function [18]
also has a twofold center of mass degeneracy, and in
Fig. 2(a) we show the overlap of the two lowest states
from the diagonalization with the subspace spanned by the
Laughlin wave functions.

Our simulations show a very good overlap with the
Laughlin wave function for � & 0:3, but the overlap starts
to fall off for � * 0:3. The excellent overlap with the
Laughlin wave function is not accidental; e.g., for N � 5
and � � 0:24 the size of the Hilbert space is 8:5 105 and
the overlap is 95%. These numerical calculations therefore
provide strong evidence that the Laughlin wave function
captures the essential properties of the many-particle sys-
tem. Experimentally, it is desirable to have a large excita-
tion gap. From the results in Fig. 2(b) we see that the
optimal regime is �� 0:2 (although the data still have
finite size effects). In this region the Laughlin wave func-
tion (1) is a very good description of the state.
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FIG. 3 (color online). (a) Creation of the Laughlin state by
melting a Mott insulator. Full lines (right axis): energy relative to
the ground state of the 19 lowest excited states for different
amplitudes (V0) of the superlattice potential. Dashed (dotted)
lines: overlap of the ground state (first excited state) with the
Laughlin wave function (1) (left axis). Note that at V0 � 0 there
are two nearly degenerate states because of the combination of
magnetic field and periodic boundary conditions. These two
states have a 98% overlap with the two possible Laughlin states.
Results are for a 6 6 lattice with four atoms and eight fluxes,
� � 0:22. The periods of the superlattice are px � py � 3.
(b) Density distribution after expansion from the lattice (arbi-
trary units). For illustration we have assumed a lattice depth of
ten recoil energies [11] and � � 0:22 as in (a).
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To reach the Laughlin state experimentally it is neces-
sary to adiabatically load a cold Bose-Einstein condensate
(BEC) into the lattice. We expect the transition between
the BEC and fractional quantum Hall states to be a direct
first order phase transition or proceed via several inter-
mediate phases [19]. Thus, a direct transition between the
BEC and the fractional quantum Hall state is likely to
create many excitations. Instead, we suggest to enter the
Laughlin state through a Mott-insulator state [3,4,11]. We
employ an additional superlattice V � V0
sin

2��x=px� �
sin2��y=py��, as realized experimentally in Ref. [20]. By
loading a BEC into the combined potential, it is then
possible to reach a Mott-insulator state with a single
atom at each of the potential minima of the superlattice
[3,4,11]. In this state the atoms are unaffected by the turn-
on of the effective magnetic field. By reducing the super-
lattice potential, it is then possible to adiabatically reach
the Laughlin state. In Fig. 3(a) we show the evolution of the
lowest energy levels when we reduce the superlattice po-
tential V0. For V0 � J the ground state is the Mott-
insulator state which is well separated from all excited
states. When V0 � 0, there are two nearly degenerate
ground states because of the center of mass degeneracy
mentioned above. Apart from this artifact of the periodic
boundary conditions, the ground state is always well sepa-
rated from the excited states by an energy gap, and the
ground state of the system smoothly changes into the
Laughlin state, so that it is possible to reach the Laughlin
state by slowly reducing the superlattice potential.

We next consider experimental issues involving the
realization and detection of quantum Hall states. Under
realistic conditions the required ‘‘hard-core’’ limit can be
reached, e.g., in atomic Rb with a tunneling rate J=2� �h of
the order of hundreds of Hz [3,11], which indicates that
energy gaps in the range 10–100 Hz can be obtained. To
observe the quantum Hall states, the temperature needs to
be below this excitation gap which requires realistic tem-
peratures of a few nK. A limitation is that the oscillating
potentials produce strong phase shifts on the atoms. If there
is a total ofN� fluxes in the lattice, the phase shift on atoms
in the outermost regions is on the order of N� per half-
cycle. Hence a practical implementation requires strong
gradients, and the phase shift in one-half of the pulse must
exactly balance the phase shift in the other. Another limi-
tation is that the oscillating quadrupole potential can excite
higher Bloch bands. If we approximate the wells by a
harmonic potential, the weight on the excited state in
the outermost regions of the lattice is wex �

�N���a0= �
2!2=!2b, where !b is the Bloch-band separa-

tion, and where the ground state width a0 is of order  =10
for typical parameters [11]. With !� !b=10 this is not a
major concern for N� & 102–103.

To demonstrate experimentally that one has reached the
Laughlin states one would ideally probe some of its unique
features, such as incompressibility, the fractional charge of
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the excitations, or their anyonic character. Such probes will
most likely be very challenging to implement and we shall
now discuss a simpler experimental indication. In most
experiments with cold trapped atoms the state is probed
by releasing the atoms from the trap and imaging the
momentum distribution. To show that such an expansion
gives useful information we use the continuum wave func-
tion (1) which is a good description in the regime we are
interested in. In the lowest Landau level the single particle
density matrix for any state with constant density was
found in Ref. [21]. From this density matrix we find the
asymmetric expansion shown in Fig. 3(b). This density
distribution is clearly distinct from, e.g., a superfluid state
which will have Bragg peaks, and a Mott-insulator, which
gives a symmetric distribution [3]. This method, however,
does not reveal detailed information about the state except
that it is in the lowest Landau level. Further insight can be
obtained by measuring higher order correlation functions
[22,23], by probing the excitation spectrum through stimu-
lated Bragg scattering [24], or by studying edge states [25]
(note that the latter does not appear in our numerics be-
cause of the periodic boundary conditions).

To summarize, we have presented a feasible method to
construct fractional quantum Hall states in an optical lat-
tice. Compared to previous proposals with cold atoms [6]
the optical lattice approach results in a more robust quan-
tum Hall state, since it is protected by a larger gap. The
present approach therefore reduces the experimental re-
quirement and could facilitate the observation of such
states with a larger number of particles.

Several interesting new avenues are opened by this
work. First of all, it would be interesting to understand
the exact nature of the ground state when there is a large
flux fraction per unit cell � * 0:3. We have not made any
modification to the Laughlin wave function to take the
lattice into account, and one would expect this to reduce
the overlap in Fig. 2(a) when � is not vanishingly small.
The decrease in the overlap is, however, much less abrupt
for the single particle wave functions. We therefore do not
expect this to explain the observed results. Alternatively,
the decrease could be caused by the system entering a
different phase for � * 0:3, e.g., a superfluid state with a
vortex lattice. This possibility is supported by the decrease
in the excitation gap above � * 0:25; see Fig. 2(b). We
further observe an increase in the largest eigenvalue of the
one-particle density matrix above � * 0:3 (especially for
� � 1=3 and 1=2 that correspond to a commensurate
density of vortices) which is consistent with a superfluid
state. We cannot, however, draw any definite conclusion
from our present numerical results. In addition, the present
method for creating the quantum Hall state in the lattice
can easily be extended to yield different magnetic field for
different internal atomic states of multicomponent bosons.
Using this approach, effective non-Abelian gauge fields
can be created. Therefore the present method may allow
08680
one to explore experimentally the novel properties of a
many-particle system in the presence of such a field.
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