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Kondo Screening Cloud Around a Quantum Dot: Large-Scale Numerical Results
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Measurements of the persistent current in a ring containing a quantum dot would afford a unique
opportunity to finally detect the elusive Kondo screening cloud. We present the first large-scale numerical
results on this controversial subject using exact diagonalization and density matrix renormalization group
(RG). These extremely challenging numerical calculations confirm RG arguments for weak to strong
coupling crossover with varying ring length and give results on the universal scaling functions. We also
study, analytically and numerically, the important and surprising effects of particle-hole symmetry
breaking.
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The screening of an impurity spin by conduction elec-
trons, the Kondo effect, is believed by many to be associ-
ated with the formation of a ‘‘screening cloud’’ around the
impurity with a size �K � vF=TK where vF is the Fermi
velocity and TK is the Kondo temperature, the character-
istic energy scale associated with this screening [1]. This
fundamental length scale, which has been called the ‘‘holy
grail’’ of Kondo research [2], and which from the above
estimate can be as large as 1 �m in typical situations, has
never been observed experimentally and has sometimes
been questioned theoretically. Although traditionally asso-
ciated with dilute impurity spins in metals, the Kondo
effect has been observed more recently in nanostructures
[3–6]. The electron number on semiconductor quantum
dots, weakly coupled to leads, can be varied in single steps
with a gate voltage. When this electron number is odd, the
quantum dot generally has a spin of 1=2 and can act as a
Kondo impurity, screened by electrons in the leads. By
attaching the dot to quantum wires of length L, the Kondo
screening cloud size could be measured from the depen-
dence of conductance properties on L [7,8]. A particularly
simple case is when the dot is attached to a single quantum
wire which forms a closed ring. Two simple tight-binding
models have been considered corresponding to an ‘‘em-
bedded’’ or ‘‘side-coupled’’ quantum dot (EQD or SCQD).
Suppressing electron spin indices, the corresponding
Hamiltonians are

HEQD � �t
XL�2

i�1

�cyi ci�1 � H:c:� �HK; (1)

where HK � JK ~S � �c
y
1 � cyL�1�

~�
2 �c1 � cL�1�, and

HSCQD ��t
XL�1

i�0

�cyi ci�1�H:c:��HK; �cL � c0� (2)

where HK � JK ~S � c
y
0
~�
2 c0, and ci� annihilates an electron

at site i of spin �; Sa are S � 1=2 spin operators. We
generally set t � 1 in what follows. A magnetic flux is
added to the model by adding appropriate phases to the
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hopping terms and the resulting persistent current, j, is
measured.

The EQD must have j � 0 when the Kondo coupling,
JK � 0, since then the sites 1 and (�1) are decoupled from
each other. On the other hand, the SCQD has a large jwhen
JK � 0 since the Hamiltonian then reduces to that of a free
ring with periodic boundary conditions. When the Kondo
coupling becomes large (JK 	 t) essentially the inverse
behavior occurs, due to the formation of a Kondo screening
cloud. In the strong coupling limit of the EQD the screen-
ing electron goes into the symmetric orbital on sites 1 and
�1. This allows resonant transmission through the anti-
symmetric orbital on these sites and the ideal sawtoothlike
j of a free ring occurs when the system is at 1=2-filling. On
the other hand, for the SCQD, the screening electron sits at
site 0 and completely blocks all current flow in the strong
coupling limit. The more interesting question is the behav-
ior of j in these models for small JK=t at large length, L.
The Kondo length scale grows exponentially as JK=t! 0.
The persistent current was predicted [7,8] to be given by
universal scaling functions of �K=L and the dimensionless
magnetic flux through the ring, � � e�=c:

jL=�evF� � f��K=L;��; L; �K 	 a; (3)

with a the lattice constant. The crossover functions, f, are
very different for the EQD and SCQD and also depend on
the parity of the electron number in the ring, N. However,
they are otherwise expected to be universal in the small JK
limit, not depending on details of the dispersion relation,
electron density, the range of the Kondo interaction, etc. In
previous work by one of us and Simon [7,8], it was argued
that, in the limit L	 �K, strong coupling behavior occurs,
since the effective Kondo coupling is expected to become
large at large length scales. Thus it was predicted that
f��K=L;�� approaches the value for an ideal ring at
�K=L! 0 for the EQD but approaches zero for the
SCQD, for either parity of N. The former prediction is in
disagreement with other studies using variational [9] or
cluster mean field [10] techniques where jL for the EQD
was predicted to have very different L dependence,
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FIG. 1. The current at 1=2-filling for N � 4p� 1 (a) and
N � 4p (b) for the EQD. Results are shown for a number of
system sizes with JK � 1 as a function of �= . The lines are
ED, the symbols DMRG results.
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FIG. 2. The current jL=evF for JK � 1 and �= � 0:05 vs L
for the EQD. Shown are ED results (
), DMRG results with
(mL � 1024,mR � 512) (�) and (mL � 1024, mR � 2048) (�).
The dashed lines indicate the free ring result.
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whereas the SCQD prediction is in stark contradiction with
the conclusions of other studies using Bethe ansatz [11]
and diagrammatic expansions [12] that predicted that j
attains the value for an ideal ring at �K=L! 0. However,
the results of Refs. [7,8] are in agreement with the slave
boson mean field studies [13], interpolative perturbative
approach [14], numerical renormalization group results
[15] performed in zero field with open boundary conditions
as well as with cluster mean field calculations [16]. Other
theoretical studies include Refs. [17–20]. The behavior of
the persistent current, j, in quantum dot systems is there-
fore the subject of considerable controversy.

In this Letter we attempt to settle this controversy using
exact diagonalization (ED) and density matrix renormal-
ization group (DMRG) techniques. These techniques are
essentially exact and superior to the variational and mean
field approaches used in previous studies. The calculations
have been performed using fully parallelized programs
on distributed SHARCNET facilities. The current j �
�edE=d� is obtained from the ground state energy and
for the DMRG we denote the number of states kept in the
left and right density matrices bymL andmR. In the case of
the EQD we find good agreement with the expected scaling
picture and obtain useful results on the crossover functions,
f. For the SCQD we find an extremely slow crossover with
varying L or JK but we present both numerical and ana-
lytical evidence that j scales to zero at small �K=L at
1=2-filling, as predicted by the previous RG approach.
We show that particle-hole (p-h) symmetry breaking leads,
for small Jk=t, to small nonuniversal corrections to jL.
Surprisingly, these produce a small nonzero value of jeL,
the current for even N, at L! 1 for the SCQD.

Embedded quantum dot.—In Fig. 1 we plot j vs �= for
a fixed JK � 1, and various L � N. Here both L and N
include contribution from the impurity site. Note that a
crossover is seen between the weak coupling behavior at
smaller lengths (small and sinusoidal) to strong coupling
ideal ring behavior at the largest lengths (larger and the
sawtooth). To further illustrate this crossover, we focus on
one value of the flux, �= � 0:05. In Fig. 2 we plot jL=
evF vs L for this fixed value of the flux for L � N both
even or odd. Small numerical errors in the DMRG calcu-
lations with (mL � 1024, mR � 512) are visible beyond
L � 24 when compared to results with m � �1024; 2048�.
As can be seen from Figs. 1 and 2 the current depends
strongly on whether L � N is even or odd. For L � N even
there is a difference between N � 4p and N � 4p� 2,
visible in Fig. 2, that can be absorbed into a redefinition [8]
of the flux ~� � ��  N=2. From the results shown in
Figs. 1 and 2 we conclude that jL increase with L towards
the free ring limit contradicting Refs. [9,10].

Weak and strong coupling results [8] and Fig. 1 indicate
that j��� has period 2 for N � L even but period  for
N � L odd. The latter result follows rigorously at
1=2-filling from p-h symmetry which takes �!  � �
for N � L odd together with time reversal which takes
�! ��. Away from 1=2-filling, when p-h symmetry is
08660
broken, we might expect that the period of j��� would be
enlarged to 2 . This can be checked at both weak and
strong coupling. In the weak coupling limit, in addition to
the terms calculated previously [8], we find an additional
term, of period 2 in the current for N odd, only present
away from 1=2-filling (N=L � 1):

!jo �
3J2Ke
 L

sin ~�sin2� N=2L�
2 cos� N2L �

4t
; (4)

where ~� � ��  �N � 1�=2. In the weak coupling limit,
the period 2 term in j for odd N can be understood, in the
continuum limit formulation with a linearized dispersion
relation and a wave-vector cutoff which is symmetric
around the Fermi surface, as arising from particle-hole
symmetry breaking potential scattering terms in the effec-
tive Hamiltonian, of O�J2K�. These terms are strictly mar-
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FIG. 4. (a) The current jL=e at 1=2-filling for the SCQD for
~�= � 0:15 and JK � 0:75, 1.60, 4.00 vs L. Solid (open)
symbols are ED (DMRG with mL � 1024, mR � 2048) results.
A function with pure 1=L behavior is shown. (b) The current
jL=e at 1=4-filling for the SCQD for ~�= � 0:75 and JK � 4 vs
L. ED results are shown for even N (�) and odd N (
). The
dashed line is a power-law fit to the points with N � 5� 11, of
slope � �1. The symmetry reduced Hilbert space at N �
12�L � 22� is 3, 929, 717, 484.
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ginal under renormalization group transformations and
hence their effects do not grow larger with growing
L=�K, but remain of O�J2K�, where JK is the bare coupling,
at all length scales. Thus the period 2 term in j becomes
negligible at all length scales, when L	 �K, in the limit of
small bare coupling and hence do not appear in the uni-
versal scaling functions, f��K=L;��.

We have also attempted to numerically calculate an
approximation to the scaling function f by rescaling ED
results out to L � 13 for a range of JK. Our results are
shown in Fig. 3 where jL=evF is plotted vs L=�K for a
fixed �= � 0:40�0:80� for L � N odd (even). If �K�J0K�
is fixed at a given J0K to set the scale of the x axis, all the
data can be rescaled to follow a single curve as shown. (See
Ref. [21] for details.) Even though the results in Fig. 3 are
only an approximation to the scaling function, they nicely
confirm the scaling picture and show that f is an increasing
function of L=�K.

Side-Coupled Quantum Dot.—[Now L does not include
the impurity site while N does include the impurity elec-
tron. ForN odd ~� � ��  �N � 1�=2 and for N even ~� �
��  N=2.] In Fig. 4(a) we show exact diagonalization
and DMRG results for the SCQD at ~� � 0:15 analogous
to Fig. 2. These results are consistent with jL going to zero
at L	 �K; however, it appears necessary to go to ex-
tremely large L=�K to see this behavior. A calculation of
08660
the scaling function, f, equivalent to Fig. 3, shows that f
for the SCQD is a decreasing function of L=�K in contra-
diction to the results of Refs. [11,12].

In order to test our conjectured scaling behavior, we
have studied both analytically and numerically the strong
coupling limit, JK 	 1, in greater detail. In this limit one
electron sits at site 0 and forms a singlet with the impurity
spin, effectively cutting the ring at the origin. Perturbation
theory in 1=JK generates terms in a low energy effective
Hamiltonian which couples the two sides of the quantum
dot and thus allows for a small nonzero current. By doing
perturbation theory to third order in 1=JK, we obtain an
effective Hamiltonian valid at JK 	 1:

Heff � �
XL�2

j�1

�cyj cj�1 � H:c:� �HT; (5)

where the tunneling terms are:
HT�
4

9J2K
e�i��cy1cL�2�c

y
2cL�1��H:c: �

32

J3K
e�2i�cy1"c

y
1#cL�1"cL�1# �H:c: �

4

3J3K
�n1�nL�1�2�e�i�cy1cL�1�H:c:

(6)

Here ni is the electron number on site i. We have ignored additional terms in the effective Hamiltonian which do not
contribute to the current at low orders in 1=JK. We may now evaluate the current, up to O�1=J3K�, by calculating the �
dependence of the ground state energy in first order perturbation theory in HT . Considering 1=2-filling, this gives, for odd
or even N,

joL=e�
32

9J2K

�
tan

�
 
2L

�
� tan

�
3 
2L

��
sin ~��

128

3J3KL
�2sin~�� sin�2~��� jeL=e�

32

3J3KL
�1� 1=cos� =L��2 sin2~�: (7)
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The absence of period 2 terms for N even can be under-
stood from the p-h symmetry of the unperturbed
Hamiltonian in Eq. (5) which is broken, for N even, by
HT . Note that these formulas predict that j goes to zero as
1=L2 at large L. In the strong coupling limit, this amounts
to an analytic proof that the current is not the same as for
the ideal ring, in contradiction with the claims of Ref. [11].
We have verified that Eqs. (7) are in excellent agreement
with our numerical results for large JK. However, we find
that surprisingly large values of JK, of about 100, are
necessary before these formulas become accurate. This is
consistent with the results of our study of length depen-
dence of jwhich suggests a very slow crossover from weak
to strong coupling behavior as L=�K is varied.

From Eqs. (7) it is also possible to calculate the current
away from 1=2-filling; at large JK we find:

joL=e �
32

9J2K
sin�~�� �

�
sin
 �N � 1�

2L
tan

 
2L

� sin
3 �N � 1�

2L
tan

3 
2L

�

jeL=e �
32

9J2K
sin�~��

"
cos� �N�1�

2L �

cos� 2L�
�

cos�3 �N�1�
2L �

cos�3 2L�

#
:

(8)

Note that joL=e is O�1=L� and actually gets smaller as we
move away from 1=2-filling. We see that joL approaches
zero as L! 1. Surprisingly, we see that jeL attains a
nonzero limit as L! 1, away from 1=2-filling, in stark
contrast to joL and the behavior of both joL and jeL at
1=2-filling. We have numerically verified Eqs. (8) in detail
finding excellent agreement for JK > 100. For an inter-
mediate coupling of JK � 4 we show ED results for jL=e
in Fig. 4(b), at a flux ~�= � 0:75 and 1=4-filling, clearly
approaching a nonzero limit for N even with opposite sign
and a much smaller amplitude than that of the ideal ring.
For odd N, jL=e� const=L in accordance with Eq. (8).
This O�1=L� behavior of je away from 1=2-filling results
from nonuniversal particle-hole symmetry breaking terms
in the low energy effective Hamiltonian. For small JK=D
(where D � t is the bandwidth) these terms are small, and
remain so under renormalization. They contribute to je at
L	 �K, which has the form: je � �evF=L���A�K=L��
sin2�� B�JK=D�

2 sin~�� where A is a universal constant
and B is a nonuniversal constant, both of O�1�. Thus the
universal (1=L2) behavior is destroyed at large length
scales, � �K�D=JK�2 	 �K, away from 1=2-filling, in
contrast to the claim in Ref. [8]. Note, however, that the
current at these large length scales is smaller by a factor of
�JK=D�

2 than that of an ideal ring, in contrast to the claim
in Ref. [11].

Following Nozières [1] we have developed a local Fermi
liquid theory description of the low temperature fixed point
of the SCQD. This fixed point corresponds to the impurity
08660
forming a singlet with one conduction electron and the
remaining low energy electrons being repelled from the
origin, corresponding to a broken ring with zero persistent
current. In the 1=2-filled case, the leading irrelevant op-
erators at this fixed point, which control the persistent
current at large L, are � y

� ~� ��
2,  y

� ~� � � � y
� ~� � �

 y
� ~� ��, and their complex conjugates. Here � and �

label the electron operators on the right- and left-hand
side of the impurity. In the limit of weak bare Kondo cou-
pling, or large �K, the coupling constants in front of these
terms can all be fixed uniquely up to one overall factor with
dimensions of inverse energy, proportional to the inverse of
the Kondo temperature. This theory predicts that the per-
sistent current scales to zero as ev2F=TKL

2 at 1=2-filling, or
for odd N at arbitrary filling, as well as making various
other predictions that could be compared with numerical
simulations and experiments [22]. In conclusion, we have
given strong numerical evidence and analytical results in
support of the scaling picture of the persistent current in
quantum dot systems resolving a number of outstanding
controversies.
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