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We examine via molecular simulation the dependence of the crystal-melt interfacial free energy � on
molecular interaction and crystal structure (fcc vs bcc) for systems interacting with inverse-power
repulsive potentials, u�r� � ���=r�n, 6 � n � 100. Both the magnitude and anisotropy of � are found
to increase as the range of the potential increases. Also we find that �bcc < �fcc, consistent with recent
observations that some fcc forming fluids nucleate via formation of metastable bcc nuclei. The anisotropy
in � is also seen to be smaller in the bcc systems. By extrapolation, we also obtain an improved estimate of
� for hard spheres.
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The crystal-melt interfacial free energy � is the revers-
ible work needed to form a unit area of interface between a
crystal and its melt [1]. Both the magnitude and anisotropy
of � are of significant importance in a number of disci-
plines, as they are the primary controlling parameters
governing the kinetics and morphology of crystal growth
[2]. For example, the nucleation rates of crystals [3,4] and
colloids [5] exhibit a strong dependence on �, and its
anisotropy has a profound effect on the nature of dendritic
growth [6,7]. Unfortunately, direct experimental measure-
ments for � exist for only a few materials [8], and, with the
exception of a small number of studies [9,10], the values
determined are not of sufficient precision to resolve the
anisotropy. The paucity of experimental data, together with
a desire to understand the thermodynamics of crystal-melt
interfaces from a molecular perspective, has motivated
recent interest in the development of computational meth-
ods for the calculation of � [11,12]. These efforts have
focused both on the determination of � for realistic models
of materials (especially metals [12–14] and metal alloys
[15]) and for simple models, such as hard spheres [11] and
Lennard-Jones particles [16–18].

The current understanding of the dependence of � on
material properties is largely empirical. In 1950, Turnbull
[19] reported values of � for a variety of materials, ob-
tained indirectly from nucleation rate experiments.
Turnbull observed a strong correlation between the en-
thalpy of fusion per particle �Hfus and 
� � �
�2=3

c , where

c is the crystal number density and 
� is a measure of the
free energy per interfacial particle. This correlation (known
as ‘‘Turnbull’s rule’’) can be expressed mathematically as


� � CT�Hfus; (1)

where the Turnbull coefficient, CT , is found to be approxi-
mately 0.45 for metals and 0.32 for many nonmetals.
Several theories [20–22] have been advanced to explain
the molecular origin of Eq. (1), but the results are quite
sensitive to the nature of the assumed interfacial structure.
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These theories have in common an assumption that the
crystal-melt interfacial free energy is primarily entropic in
origin. This approach is supported by the recent observa-
tion that � for fcc metals is well approximated using a
hard-sphere model [23]. The hard-sphere model is, how-
ever, unable to describe the variability in CT and in the
anisotropy across systems.

The dependence of � on crystal structure is crucial to
understanding the role of metastable structures in nuclea-
tion pathways. In 1897, Ostwald [24] formulated his ‘‘step
rule,’’ which states that nucleation from the melt occurs to
the phase with the lowest activation barrier, which is not
necessarily the thermodynamically most stable bulk phase.
In the case of the nucleation of face-centered-cubic (fcc)
crystals, there is evidence that crystallization often pro-
ceeds first through the formation of body-centered-cubic
(bcc) nuclei, which transform to fcc crystallites later in the
growth process. This phenomenon has been observed in
experiments on metal alloys [25], in computer simulations
of Lennard-Jones particles [26] and weakly charged col-
loids [27], and in classical density-functional theory stud-
ies of nucleation in Lennard-Jones [28]. These results
could be explained if � for bcc crystals were significantly
lower than that for fcc crystals in these systems as that
would lead to substantially lower activation barriers. Using
a simple model of interfacial structure, Spaepen and Meyer
[22] predicted that � for bcc-melt interfaces should be
about 20% lower than that for fcc-melt interfaces, based
on packing considerations. In a recent paper, Sun et al. [14]
determined � for bcc- and fcc-melt interfaces for several
models for iron, obtaining values of � and CT that were
about 30%–35% smaller for bcc-melt interfaces than for
the corresponding fcc interfaces.

In this work we examine, via molecular simulation, the
interfacial free energies for a large number of systems
interacting with inverse-power potentials of varying range,
crystal orientation, and crystal structure (fcc or bcc). By
focusing on a general class of model interaction potentials
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instead of on a single, specific system, we aim to develop a
generic molecular-level understanding of the interfacial
thermodynamics of simple materials.

The inverse-power series of purely repulsive potentials
is defined by the pair interaction

u�r� � �
�
�
r

�
n
; (2)

where � and � set the energy and length scale, respectively.
The range of the interaction decreases with increasing n,
approaching the hard-sphere limit as n ! 1. This poten-
tial series has a number of notable properties that make it
useful for the current study. First, because there is only one
parameter in the potential, ��n, the density and tempera-
ture scales are not independent and all excess thermody-
namic quantities are functions only of the quantity [29]


n � 
�3�kT=���3=n � 
	T	�3=n: (3)

In particular, the phase diagram for these systems is one
dimensional, with coexistence fully specified by giving the
coexistence values of 
n in the crystal (
n;c) and fluid
(
n;f) phases. As a result, both the reduced pressure P	

and reduced interfacial free energy �	 along the coexis-
tence boundary exhibit power-law scaling with the melting
temperature:

P	 � P�3=� � P1T
	1
3=n; (4)

�	 � ��2=� � �1T	1
2=n; (5)

where the subscript ‘‘1’’ denotes the quantity at T	 � 1.
Second, the entropy of fusion, �Sfus, for these systems is
constant along the coexistence curve; therefore, the corre-
sponding �Hfus is directly proportional to Tm.

The values of 
n;c, 
n;f, and P1 at coexistence have been
previously obtained via simulation for 6 � n � 1 (see
Ref. [30], and references therein). For large n, the fluid
freezes to an fcc crystal structure, but below about n � 7,
the bcc structure becomes the thermodynamically stable
phase on freezing. Because the free energy difference
between the fcc and bcc phases is small, metastable bcc
(or fcc) crystal-melt interfaces are quite stable, even for
long simulation runs. Thus, this potential series is a good
candidate for comparing fcc and bcc values of � for fixed
interaction potential.

A scaling expression for Turnbull’s 
� � �
�2=3
c can be

obtained by combining Eqs. (3) and (5) to give


� � �	
	�2=3 � �1T
	1
2=n
m �
n;cT

	3=n
m ��2=3

� ��1

�2=3
n;c �T	

m � 
�1T
	
m: (6)

Thus, 
� scales with the melting temperature for all inverse-
power potentials, not just hard spheres. The scaling with
Tm occurs even though � for these systems is not purely
entropic in origin. Because �Hfus scales with Tm for these
systems [�Hfus � ��Hfus;1�Tm], we have the interesting
result that Turnbull’s rule is exact for inverse-power po-
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tentials. Equation (6) has been shown to well approximate
� for a variety of close-packed metals [23] (with a propor-
tionality constant of about 0.5, based on Turnbull’s nuclea-
tion data [19]), and can be viewed as an alternative to
Turnbull’s rule.

At present there are two methods for the calculation of �
via simulation. In the fluctuation method [12] the interfa-
cial stiffness is obtained from the spectrum of interfacial
fluctuations [12]. By determining the stiffness for a variety
of interfacial orientations, accurate values of � can be
obtained. In the cleaving method [11,16], which is em-
ployed here, � is obtained using thermodynamic integra-
tion—directly calculating the reversible work per unit area
required to continuously transform separate bulk crystal
and melt systems into a single system containing an inter-
face. The cleaving procedure consists of four basic steps:
(i) cleave the crystal system with a suitably chosen ‘‘cleav-
ing’’ wall potential, (ii) cleave the melt system similarly,
(iii) rearrange the boundary conditions to allow interaction
of the crystal and melt systems while maintaining the
cleaving potentials, and (iv) remove the cleaving potentials
from the combined interfacial system.

For steps (i) and (ii), we use the cleaving wall method
[17], where the cleaving potential is created by a pair of
‘‘cleaving walls,’’ placed on opposite sides of the cleaving
plane. The walls are constructed of properly oriented crys-
tal layers that interact with the system particles via a short-
range potential, ��r�, identical to the system potential,
except that the force and potential vanish beyond a cutoff
distance rw (see Ref. [17]). Defining z as the coordinate
normal to the interface, steps (i) and (ii) are performed by
moving the walls towards the cleaving plane from the
starting position zi, where the cleaving potential is zero,
to zf where the system is separated and particles no longer
cross the cleaving plane. The work of introducing the
cleaving potential is determined by integrating the cleaving
force from z � zi to zf.

As noted in previous studies [11,17], the structural or-
dering induced in step (ii) is the principal source of irre-
versibility. In those studies, it was found that the hysteresis
could be reduced to an acceptable level by lengthening the
equilibration runs near the transition region; however, for
the softer potentials considered here, the hysteresis was
found to be significantly larger and more persistent.
Modifications of the cleaving potential were found to
have little effect. Instead, we have found that the hysteresis
can be greatly reduced by cleaving the fluid at densities
that are a few percent below the fluid coexistence density

f. As a result we have modified the cleaving process in
step (ii) as follows: The fluid is first stretched in the z
direction to reduce the density from 
f to 
 < 
f. Next,
the cleaving potential is introduced. Finally, the system is
compressed back to 
f with the cleaving potential main-
tained. The additional work of stretching and compressing
the system can be calculated by integrating the pressure
normal to the interfacial plane with respect to z.
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The work required to rearrange the boundary conditions
in step (iii) and to remove the cleaving walls in step (iv) is
calculated as described in Ref. [17]. The interfacial free
energy for the system is calculated by summing the work
required in each of the steps (i)–(iv) divided by the area of
the created interface.

We have determined � for fcc inverse-power systems
with n � 6, 7, 8, 10, 12, 14, 20, 30, 50, and 100. In
addition, bcc crystal-melt values for � were calculated
for n � 6, 7, and 8. The full results from these simulations
are summarized in Table I. The error bounds on the results
(shown in parentheses in Table I) are estimated from a
combination of statistical error and the magnitude of the
residual hysteresis. The precise coexistence conditions
(also listed in Table I) were determined in long constant
temperature (NVT) simulations, which allowed the inter-
faces to equilibrate through freezing or melting, while
maintaining stress-free conditions in the bulk crystal
[13,17]. All simulation runs were performed using a
Nosé-Hoover thermostat. The system sizes ranged from
approximately 15 000 particles for n � 6 to 30 000 for n �
100. For efficiency, the potential was smoothly truncated at
a cutoff radius, ranging from 1:2� for n � 100 to 3:5� for
n � 6 using the truncation discussed in Refs. [13,31].

The scaled interfacial free energies, �1, for all systems
are plotted in Fig. 1(a) as functions of 1=n (the hard-sphere
system is obtained in the limit 1=n ! 0). A number of
features are striking. First, for n � 6, 7, and 8 where both
fcc and bcc interfaces were studied we see that � for the
bcc interfaces are approximately 25% lower than the fcc
values for the same potentials. This is consistent both with
the recent simulation results for various models for iron
[14] and experiments [25] and simulations [26–28] in
which preferential nucleation to metastable bcc nuclei is
observed in some fcc forming systems. Second, there is a
pronounced minimum in � near n � 20 (1=n � 0:05). A
similar minimum in the coexistence densities has been
TABLE I. Summary of results for inverse-power potentials. The
extrapolations of the inverse-power data for n � 100, 50, 30, and 20 (
in the last digit(s) shown.

n 
n;c 
n;f P1 �1�100� �1�110

fcc 6 2.350(2) 2.323(2) 103.0(2) 0.873(8) 0.796(9
7 1.868(2) 1.838(2) 64.22(16) 0.754(7) 0.695(7
8 1.604(2) 1.571(2) 46.39(10) 0.689(8) 0.634(8

10 1.334(1) 1.296(1) 30.34(12) 0.620(6) 0.575(7
12 1.206(1) 1.163(1) 23.41(4) 0.584(6) 0.545(6
14 1.135(1) 1.087(1) 19.82(5) 0.568(6) 0.534(5
20 1.052(1) 0.991(1) 15.15(5) 0.556(5) 0.524(5
30 1.026(1) 0.946(1) 12.94(3) 0.561(5) 0.531(5
50 1.017(1) 0.930(1) 11.95(3) 0.570(4) 0.544(5

100 1.023(1) 0.929(1) 11.56(2) 0.579(5) 0.555(4
1 1.037(1) 0.939(1) 11.57(3) 0.592(7) 0.571(6

bcc 6 2.326(2) 2.299(2) 100.0(2) 0.642(8) 0.607(8
7 1.861(2) 1.834(2) 63.88(17) 0.551(7) 0.516(6
8 1.607(2) 1.578(2) 47.1(1) 0.497(7) 0.468(7
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noted [30], which, as Table I shows, occurs at slightly
higher values of n. Beyond n � 20, however, the value
of � is seen to rise rapidly with increasing n.

Figure 1(b) shows the scaled interfacial free energy per
interfacial particle, 
�1 defined in Eq. (6). The dependence
on n for 
�1 is much less pronounced than for � itself. This
indicates that the primary source of variation in � is the
interfacial area per particle (through 
n;c). Unlike �, 
� is
linear for small 1=n, which facilitates extrapolation of the
data to the hard-sphere limit (1=n � 0). Linear regression
for 
� for 1=n � 0:05, 0:03
3, 0.02, and 0.01 yields values
for the hard-sphere system, which are shown as triangles in
Figs. 1(a) and 1(b) and included in the data in Table I.
These extrapolated values are about 4%–6% lower than
the corresponding values reported earlier for the hard-
sphere system [11,32] but are in closer agreement with
results obtained indirectly from experiments on hard-
sphere-like colloidal systems [33,34]. The current hard-
sphere results are more consistent than those of Ref. [11]
with other recent simulations on fcc systems [12,17,18] in
the ordering of the three orientations studied. We regard the
current extrapolated hard-sphere values to be the most
precise values obtained for this system to date.

While we have determined � only for the [100], [110],
and [111] directions, it is possible to extract information as
to the full angular dependence of �. Defining n̂ as the unit
vector perpendicular to the interfacial plane, the orienta-
tion dependence of the interfacial free energy, ��n̂�, for fcc
and bcc crystals can be parametrized by an expansion in
cubic harmonics. One such expansion [35], recently ap-
plied in a number of studies [15,17,18], is

��n̂�=�0 � 1
 �1

 X3
i�1

n4i �
3

5

!


 �2

 X3
i�1

n4i 
 66n21n
2
2n

2
3 �

17

7

!
; (7)
values listed for the hard-sphere system (n � 1) are based on
see the text). The numbers in parentheses are the estimated errors

� �1�111� �0 �1 �2 CT

) 0.764(11) 0.810(5) 0.20(2) �0:003�8� 0.60(3)
) 0.681(7) 0.708(4) 0.16(2) 0.003(7) 0.58(3)
) 0.622(6) 0.647(4) 0.16(2) 0.004(8) 0.57(2)
) 0.563(9) 0.584(4) 0.15(2) 0.002(9) 0.54(2)
) 0.534(7) 0.553(4) 0.14(2) 0.001(8) 0.546(18)
) 0.519(6) 0.540(3) 0.13(2) �0:003�7� 0.530(16)
) 0.511(5) 0.530(3) 0.13(2) �0:002�6� 0.506(12)
) 0.516(6) 0.536(3) 0.12(2) �0:004�7� 0.480(9)
) 0.530(5) 0.548(3) 0.107(16) �0:004�6� 0.465(8)
) 0.543(4) 0.559(3) 0.095(17) �0:003�5� 0.467(7)
) 0.557(7) 0.573(5) 0.09(4) �0:005�8� 0.48(1)
) 0.620(7) 0.620(4) 0.06(3) 0.019(7) 0.47(2)
) 0.532(8) 0.530(4) 0.07(3) 0.021(8) 0.49(2)
) 0.481(7) 0.480(4) 0.06(3) 0.016(8) 0.48(2)
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FIG. 1. (a) The scaled crystal-melt interfacial free energies
�1 � �	=T	1
2=n for the inverse-power series as functions of
1=n. The open and filled symbols show the data for systems
with bcc and fcc crystal structures, respectively. The points at
1=n � 0 represent extrapolations of the finite n data, as dis-
cussed in the text. (b) The same as (a) except for the crystal-melt
interfacial free energy per interfacial particle 
�1 � �1


�2=3
c .
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where fn1; n2; n3g are the Cartesian components of n̂, �0 is
the orientationally averaged interfacial free energy, and �1
and �2 are expansion coefficients that quantify the anisot-
ropy. The results for these parameters are also given in
Table I. For the fcc systems, the value of �1 increases with
increasing potential range from a value of about 0.1 for
hard spheres to 0.2 for n � 6. The magnitude of �2 for
these systems is small and we are unable to resolve the sign
of this quantity within the error bars. Consistent with
recent studies on iron using the fluctuation method [14],
the value of �1 for the bcc systems is smaller than in the
corresponding fcc systems, indicating a smaller anisotropy.
Within the error bars, the quantity �1 is independent of the
range of the potential for the bcc interfaces. The quantity
�2 for the bcc systems is seen to be positive with a magni-
tude of about 0.02—significantly larger than the fcc value.

Using the values of �0 calculated above, we can calcu-
late the Turnbull coefficient from Eq. (1). For fcc systems,
CT increases with 1=n (except for a slight minimum at
about 1=n � 0:02) and ranges from 0.46 (for n � 50) to
0.6 (for n � 6). This variation is larger than the variation in

�1, indicating that the correlation of 
� with Tm defined in
Eq. (6) is a better candidate for a general ‘‘rule of thumb’’
for these systems than is Turnbull’s rule.
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