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Heat Transfer between Two Nanoparticles Through Near Field Interaction
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We introduce a thermal conductance by using the fluctuation-dissipation theorem to analyze the heat
transfer between two nanoparticles separated by a submicron distance. Using either a molecular dynamics
technique or a model based on the Coulomb interaction between fluctuating dipoles, we derive the thermal
conductance. Both models agree for distances larger than a few diameters. For separation distances
smaller than the particle diameter, we find a transition regime characterized by a thermal conductance
larger than the contact conductance.
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Understanding and predicting the heat transfer between
two bodies separated by a nanometric distance is a key
issue both from the theoretical and applied points of view.
Most near-field techniques involve bringing a tip close to
an interface. In many cases, the tip and the interface
temperatures are not equal so that a heat transfer is gen-
erated. Superinsulating materials such as aerogels and
highly conductive media such as nanofluids also involve
heat exchanges between neighboring particles. However,
there is a lack of understanding of the physical mechanisms
involved. The heat transfer in quantum wells and at nano-
scale has been analyzed in the context of phonon transport
[1]. The heat transfer, through constrictions [2] or linear
chains [3–5], has been discussed in many papers. The
quantized thermal conductance has been studied both theo-
retically [6,7] and experimentally [8]. Yet all these works
rely on the concept of phonon, which is hardly valid for
small aggregates. Heat transfer between two planes sepa-
rated by subwavelength distances through electromagnetic
interaction has been first investigated by Polder and van
Hove [9] and later by many groups [10,11]. It has been
shown recently that this mechanism has a very large reso-
nance at the optical phonon frequency for polar materials
[12,13]. When the distance is decreased, the heat transfer
increases dramatically.

A still open question is how energy is exchanged be-
tween two objects, a tip and a surface for instance, just
before contact. The mechanisms involved are unclear.
Whereas radiative heat transfer (i.e., emission and absorp-
tion of photons) is negligible, near-field radiation (i.e.,
Coulomb interaction) may become important. Dipole-
dipole energy transfer also known as Forster energy trans-
fer is the dominant energy transfer mechanism between
molecules [14]. In this Letter, we explore the heat transfer
between two nanoparticles (NPs) separated by a distance
on the order of a few nanometers. We introduce a thermal
conductance that can be related to the fluctuations of the
heat flux using the fluctuation-dissipation theorem. We
then implement a molecular dynamics simulation to com-
pute the thermal conductance as a function of the separa-
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tion distance. An alternative approach is based on a direct
derivation of the heat flux between the two nanoparticles
modeled by fluctuating dipoles. We find that both models
agree and yield a 1=d6 dependence for distances larger than
a few diameters. Yet when the distance is further de-
creased, we observe a stronger enhancement of the con-
ductance followed by a decay when the NPs are in contact.

Let us first define the linear response susceptibility,
relating the net heat flux Q12 exchanged between the two
NPs to the NPs temperature difference:

Q12�!�

T0

� G�
12�!��T�!�; (1)

where T0 is the mean temperature and ! is the circular
frequency. The fluctuations of �T and Q12 are character-
ized by their power spectral densities P�T and PQ12

. When
combining Eq. (1) with the definition of the power spectral
density of a random stationary process X, PX�!� �

limr!1
1
T hjXT�!�j2i, where XT is the Fourier transform of

the restriction of X�t�, to the finite time interval 
0; T�, we
obtain
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We now apply the fluctuation-dissipation theorem consid-
ering �T as the force and G�

12 as the susceptibility. The
power spectral density of the temperature fluctuation is
given by the fluctuation-dissipation theorem [15]:

P�T�!� �
Re�G�

12�

jG�
12�!�j2

��!; T0�; (3)

where ��!; T0� is the mean energy of an oscillator
�h!=�eh!=kBT � 1�, and Re indicates the real part.

Combining Eqs. (2) and (3) yields
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12�!�� �

PQ12
�!�

T2
0��!; T0�

: (4)

From Eq. (1), it is obvious that the thermal conductance
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G12 � Q12=�T is given by G12 � T0G
�
12. The static limit

(! � 0) of Eq. (4) indicates that the time integration of the
flux autocorrelation is directly proportional to the static
thermal conductance. From the Wiener-Khinchin theorem,
we have PQ12

�!� �
R

1
�1hQ12�0�Q12�t�ie�i!tdt, so that we

need to compute the temporal fluctuation of the flux be-
tween the two silica NPs. To this aim, we use the molecular
dynamics (MD) technique. It consists of computing all the
atomic positions and velocities as a function of time. Each
atom is modeled by a mass point whose trajectory is
described by the second Newton’s Law [16]:

X
j

fij � mi 
ri; (5)

where mi and 
ri are the atomic mass and acceleration, and
fij represents the force exerted by atoms j on atom i. The
interatomic forces describe the interaction in polar mate-
rials such as silica. They are derived from the van Beest,
Kramer, and van Santen (BKS) interaction potential [17] in
order to provide the full physical picture of the long range
electromagnetic and the repulsive-attractive short range
interactions. Accordingly, the BKS potential can be de-
composed into a Coulomb and a Buckingham potential.
The Buckingham part includes an exponential term to
describe the repulsive forces and a sixth power term that
represents the short range van der Waals attractive forces.
The Coulomb potential takes into account the interatomic
electrostatic forces. Neither a potential cutoff nor a limited
neighbors list are implemented in the force calculation. No
boundary conditions are applied. A fourth order Gear in-
tegration scheme [16] was used to provide the velocities vi
FIG. 1 (color online). Snapshots of the NPs at time t � 0 (top)
and 1 ps after (bottom). The crystalline structure rapidly dis-
appears and amorphous NPs are obtained. The color indicates
the work done by the atom under the electrostatic field of the
neighboring particle.
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and the positions ri from Eq. (5). The time step of 0.7 fs
that is proposed in the literature [18] appears to be suffi-
ciently small to ensure the total energy conservation. The
simulation starts with two cubes of �-cristobalite crystals
separated by a few nanometers. The two NPs are heated up
during 2000 time steps to the same temperature T0 �
300 K by using a conventional Gaussian thermostat. The
�-cristobalite is not stable at this temperature so that the
NPs lose their crystalline structure to become amorphous,
as illustrated in Fig. 1. Since the NPs positions are not
frozen, the van der Waals forces drive them to stick to-
gether. In order to avoid the artifacts due to the variation of
the inter-NP distance, we stop the simulation when a 10%
variation of the initial distance is reached. The error is
reduced by computing several phase ensembles for the
same macroscopic experiment. We also a posteriori
checked that the heat transfer is characterized by a relaxa-
tion time much smaller than the physical simulation time.
After the NPs have reached equilibrium, the exchanged
power Q12 between the nanoparticle noted NP1 and the
nanoparticle noted NP2 is computed as the net work done
by a particle on the ions of the other particle (see Fig. 2):

Q12 �
X

i2NP1
j2NP2

fij � vj �
X

i2NP1
j2NP2

fji � vi: (6)

To provide a basis for comparison, we also derive the
spectral dissipated power Q1!2 in NP2 due to the electro-
magnetic interaction NP1 in the framework of fluctuational
electrodynamics [11]. The power at a given frequency can
be expressed as a Joule term generated by a monochro-
matic field [11,12]:
FIG. 2. Explanation schemes of the calculation of the power
dissipated in the NP2 due to the field emitted by the NP1. In the
MD computation (above), the power is computed as the work
produced by the atomic motions of the NP2 atoms in the
potential field generated by the NP1. In the electrostatic calcu-
lation (below), each NP is assimilated to one dipole (vectors p1

and p2) situated at the NP centers.
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FIG. 3. Thermal conductance G12 vs distance d between the
centers of mass. R corresponds to the nanoparticle radius and N
is the number of atoms in each particle. While the MD (data
points) and the analytical (thick lines) predictions agree very
well when the interparticle distance is larger than the nano-
particle diameter, a deviation appears when d < 4R. The far-field
conductance due to emission and absorption is reported for
comparison. The inset highlights the conductance values when
the NPs are in contact ( gray data points). Their abscissa
correspond to 2R. The contact conductance is 2 to 3 orders of
magnitude lower than the conductance just before contact.
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where �00
2 is the imaginary part of the NP2 polarizability.

The modulus of the incident electric field is evaluated
simply by using a dipole approximation. Because the
separation distance d is smaller than the wavelength, re-
tardation effects can be neglected so that an electrostatic
approximation is valid. If in addition, d � R, where R
stands for the effective radius of the particle, each particle
is equivalent to a dipole. The incident field then takes the
form Einc � G � p. G is the Green’s dyadic given by G �
1

4�"0
1
r3 
1� 3uu�, where u is the unit vector r=r. Because

of thermal fluctuations, each particle has a random electric
dipole. The fluctuations-dissipation theorem yields the
correlation function:

hpkpli �
"0
�!

�00
1 �!���T1; !���!�!0��kl: (8)

This equation yields �00
1 from a MD calculation of

hpkpli. Using this result, and the form of the incident field
produced by a dipole, we obtain
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3�00
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00
2

4�3d6
��T1; !�: (9)

The power exchanged between the NPs due to the dipole-
dipole coupling can finally be written as [11]
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3
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(10)

This is drastically different from the usual radiative heat
transfer flux due to the emission and absorption of photons
in the far field [11]:

QFF
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where c is the light velocity. We can linearize Eq. (10) to
obtain the following form of the conductance:
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3
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where �0 is the temperature derivative of the function �.
The near-field and far-field contributions have the same
order of magnitude when d � 2�c=!, but the dipole-
dipole heat transfer is 12 orders of magnitude larger
when d � 10 nm. In silica, the main contributions to the
integral in Eq. (11) are the resonant phonon-polariton
modes with frequencies equal to 20 and 33 THz . They
appear as sharp peaks in the polarizability spectrum and
therefore in the spectrum of the exchanged power. The
polarizability is proportional to the NP volume and G12

is proportional to the product �00
1�

00
2 , so that the conduc-

tance should increase as the effective radius R to the power
six. Equation (11) also provides the conductance depen-
dence on the interparticle distance d � jr2 � r1j as a d�6
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law. The field produced by a dipole in the near field at a
distance d is proportional to d�3. It follows that the ex-
changed power is linearly dependent to d�6. In Fig. 3, the
thermal conductances are reported as a function of the
internanoparticle distance. In the distance interval (8–
100 nm), the MD (data points) and the dipole-dipole (thick
lines) models are in very good agreement. This constitutes
a validation of the molecular dynamics based near-field
analysis and also shows that the polarizability is relevant
up to nanometric sizes. At distances smaller than 8 nm (4
diameters), a deviation between the MD and the dipole-
dipole model appears. This deviation reaches 4 orders of
magnitude as compared to the dipole-dipole model. In
order to understand the origin of the enhanced heat trans-
fer, we have studied the contribution of the Buckingham
potential which is not taken into account in the dipole-
dipole model. We have evaluated separately the contribu-
tions of the three terms of the potential: repulsive and
attractive parts of the Buckingham potential and
Coulomb potential. The latter always dominate the transfer
in the range of investigation. Thus, the increase of the
conductance cannot be attributed to short range interac-
tions. It appears to be due to the contribution of multipolar
Coulomb interactions. Indeed, the field produced by a
particle cannot be considered as uniform in the neighbor-
ing particle when the separation distance is on the order of
the NP’s diameter. This explanation is supported by Fig. 3.
It is clearly seen that the deviation between both models
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occurs for a distance between particles which is between
4R and 5R for the three cases studied. These results show
that the thermal conductance increases continuously when
the distance between NPs is decreased. It entails that the
strong coupling between the particles is responsible for a
transition regime between far-field radiation and
conduction.

We also have done calculations of the conductance when
the particles are in contact. Surprisingly, we find that the
contact conductance is smaller than the conductance for a
separation distance of the order of the particle radius as
seen in the insert of Fig. 3 for the two smallest particles.
Since the Buckingham contribution is negligible before
contact, the conductance is only due to the autocorrelation
of the Coulomb power hQ12

CQ12
C�t�i. At contact, this last

quantity does not vary much but three other terms appear:
the pure Buckingham contribution hQ12

BQ12
B�t�i and the

cross terms hQ12
CQ12

B�t�i and hQ12
BQ12

C�t�i. The calcu-
lation shows that the cross terms are negative and on the
order of hQ12

BQ12
B�t�i. Therefore the final sum is lower

than hQ12
CQ12

C�t�i. The origin of this decay is still an open
question. It might be possible that the contact produces a
correlation of the positions of the atoms of both particles
that results in a smaller fluctuation of Q12.

One can speculate on the properties of a chain of parti-
cles. It has been shown recently [20] that a chain of
metallic particles can be used as a waveguide of electro-
magnetic energy due to the coupling of surface plasmons
between neighboring particles. We have found that a simi-
lar coupling involving localized polaritons is responsible
for the heat transfer at small distances. These results sug-
gest that the thermal conductance of a chain of particles
might be larger than the conductance of a continuous rod.

In conclusion, we have reported an analysis of heat
transfer between two nanoparticles as a function of their
separation distance. We have used a MD technique and the
fluctuation-dissipation theorem to compute the thermal
conductance between two nanoparticles. We have also
introduced a model based on a dipole-dipole interaction.
Both models agree for distances larger than 2 diameters. In
all cases, the Coulomb potential and the resonant excitation
of the polariton modes are responsible for the large heat
transfer. At separation distances smaller than the diameter,
the heat transfer due to multipolar contributions is en-
hanced by several orders of magnitude. The heat transfer
08590
before mechanical contact is found to be 2 to 3 orders of
magnitude more efficient than when the NPs are in contact.
These results show that the traditional separation between
conduction and radiation is no longer meaningful at these
length scales.
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