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Experimental Observation of Nonlinear Synchronization due to a Single Wave
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A test electron beam is propagated in a specially designed traveling wave tube. It interacts with a
nonresonant wave, and its energy distribution is recorded at the tube output. We report the direct
experimental observation of the spatially periodic electron velocity bunching, and of a nonlinear effect
on the electron velocity modulation: the synchronization of the particles with the wave responsible for
Landau damping in plasma physics. The results are explained by second order perturbation theory in the
wave amplitude.
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FIG. 1 (color online). Traveling wave tube rendering: (1) helix,
(2) electron gun, (3) trochoidal analyzer, (4) antenna, (5) glass
vacuum tube, (6) slotted rf ground cylinder, and (7) magnetic
coil.
Wave-particle interaction plays an important role in
accelerator physics and most plasma instabilities; it is
central to the understanding of collective phenomena
such as Landau damping [1]. While there were direct
observations of trapping, i.e., resonant, effects during
wave-particle interaction [2], in this Letter we report the
first experimental evidence of the nonresonant, nonlinear
electron velocity modulation by a single wave. This effect
is important because, as recalled below, it is at the root of
Landau damping in plasma physics [3–5].

We consider the interaction of essentially monokinetic
electrons with one wave in a traveling wave tube (TWT).
For a very weak electron beam intensity, the beam insta-
bility growth rate is negligible and electrons can be con-
sidered as test particles interacting with a constant
amplitude wave. No self-consistent effect, usually respon-
sible for wave amplification in a TWT, is taking place.
Classical mechanics tells us that the motion of a charged
particle in the frame moving at the wave phase velocity is
the same as for the integrable nonlinear pendulum. The
libration of the pendulum corresponds to the bouncing
motion of the particle inside the wave potential trough.
This well-known phenomenon is responsible for saturation
of the most unstable wave in the self-consistent case [6],
first observed in pioneering works on beam-plasma insta-
bility [7,8]. In this Letter, the mean beam velocity is very
different from the wave phase velocity so that each beam
electron is nonresonant, i.e., is far from being trapped. As
expected, we observe a velocity modulation of the beam
around its mean velocity vb. This modulation is not sym-
metric around vb. This nonlinear deviation is explained by
second order perturbation theory in the wave amplitude.

The experiment is performed in a long TWT. It consists
of three main elements: an electron gun, a slow wave
structure (SWS) formed by a helix with axially movable
antennas, and an electron velocity analyzer (Fig. 1). The
central part of the electron gun consists of the grid-cathode
subassembly of a ceramic microwave triode and the anode
is replaced by a copper plate with an on-axis hole whose
aperture defines the beam diameter equal to 3 mm. The
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electron beam is confined by an axial magnetic field with
typical amplitude 0.05 T strong enough for the beam radius
to be set by the anode aperture as it propagates along the
SWS axis. Beam current, Ib < 1 �A, and maximal cath-
ode voltage, jVcj< 200 V, are set independently.

Waves are launched with a movable antenna. With the
above parameters, the SWS is long enough to allow non-
linear processes to develop, as is shown later. It consists of
a wire helix, rigidly held together by three threaded alu-
mina rods and enclosed by a glass vacuum tube. The
pressure at the ion pumps on both ends of the device is 2�
10�9 Torr. The 4 m long helix is made of a 0.3 mm
diameter Be-Cu wire; its radius is 11.3 mm and its pitch
is 0.88 mm. Resistive rf terminations at each end of the
helix reduce reflections. The maximal voltage standing
wave ratio is 1.2 due to residual end reflections and helix
irregularities. The glass vacuum jacket is enclosed by an
axially slotted 57.5 mm radius cylinder that defines the rf
ground. Inside this cylinder, but outside the vacuum jacket,
are four axially movable antennas which are capacitively
coupled to the helix and can excite or detect helix modes in
the frequency range from 5 to 95 MHz. Only the helix
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modes are launched, since empty waveguide modes can
propagate only above 2 GHz. These modes have electric
field components along the helix axis [6]. Launched elec-
tromagnetic waves travel along the helix at the speed of
light; their phase velocities, v	, along the axis of the helix
are smaller by approximately the tangent of the pitch angle,
giving 2:8� 106 m=s< v	 < 5:3� 106 m=s, since the
electromagnetic signal covers a full helix circumference
to perform one pitch length along the axis. Waves on the
beamless helix are slightly damped, with jk0ij=jk0rj �
0:005, where k0 � k0r � ik0i is the beamless complex
wave number. The dispersion relation closely resembles
that of a finite radius, finite temperature plasma, with a
nondispersive part close to origin followed by a second part
with decreasing phase velocity [6], but, unlike plasma, the
helix introduces no appreciable noise.

Finally, the cumulative changes of the electron beam
distribution are measured with a trochoidal velocity ana-
lyzer [9], located at the end of the interaction region. It
works on the principle that electrons undergo an E� B
drift when passing through a region in which an electric
field E is perpendicular to a magnetic field B. A small
fraction (0.5%) of the electrons pass through a hole in the
center of the front collector and are slowed down by three
retarding electrodes. Then the electrons having the correct
drift energy are collected after passing through an off-axis
hole at the back of the analyzer. The time-averaged col-
lected current directly gives the beam energy distribution
function. Retarding potential and measured current are
computer assisted, allowing an easy acquisition and treat-
ment with energy resolution lower than 0.5 eV.

For a single wave with constant amplitude and frequency
f � 30 MHz launched by a fixed probe at L � 50 cm
from the output of the device, the velocity distribution
function (VDF) of the test electron beam is measured at
the device output. This procedure averages out the linear
sloshing of particles due to the wave. Figure 2(a) plots, for
different wave amplitudes, the VDF detected by the tro-
choidal analyzer. It is the result of superposing measure-
ments obtained for different wave amplitudes of the single
wave varying from 0 mV to 45 mV by steps of 3 mV. For
FIG. 2 (color online). Measured velocity distribution function
in a single wave at v	 � 4:06� 106 m=s with increasing am-
plitude: (a) 3D plot, (b) 2D plot with first order estimates of
modulation (lines) and trapping (half parabola) domains.
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each wave amplitude, the output beam VDF is recorded
after interaction of the test beam with the wave propagating
along the helix: the VDF is obtained by scanning the
retarding voltage with a step of 61 mV. The zero level of
each VDF is defined as the mean trochoidal collector
current averaged over 50 velocities in the tail of the VDF
where only noise is recorded. Each beam VDF is then
normalized to keep the beam current constant.
Figure 2(a) is obtained after linear interpolation by a
MATLAB treatment of the recorded output VDFs, giving a
3D plot of the VDF in the �	0; v� plane, where 	0 is the
wave amplitude measured at the launching antenna posi-
tion. An estimate of the helix wave amplitude 	0 is ob-
tained by determining the emitting probe coupling
coefficient using three probes measurements [10].

When the wave amplitude is null, Fig. 2(a) shows that
the VDF exhibits a single peak centered at vb � 3:82�
106 m=s, which is the entrance velocity of the test beam
with current Ib � 175 nA. Thus, in the absence of the
wave, the test beam propagates unperturbed along the
helix. When the wave amplitude is gradually increased,
this single peak gives birth to two peaks whose separation
increases. This is explained easily. Let the wave potential
be 	�z� sin�k0rz� 2�ft�. The wave propagates with phase
velocity v	 � 2�f=k0r � 4:06� 106 m=s given by the

dispersion relation of the helix at 30 MHz. As vb > v	 �

2
����������
�	0

p
, the beam electrons are outside the trapping veloc-

ity region of the wave and are nonresonant with the wave;
� � jqj=m is the electron charge to mass ratio. Neglecting
the wave spatial damping, their motion mainly consists of a
velocity modulation with amplitude �	0=jv	 � vbj
around their initial velocity vb. This estimate is obtained
by first order perturbation theory with respect to the con-
stant helix wave amplitude 	0 around the electron unper-
turbed free motion with constant velocity vb. Averaging
over the arbitrary initial phase of the electron in the wave
yields two peaks at the maximum and minimum electron
velocity for the VDF, as usual for a sinusoidal motion.
FIG. 3 (color online). Exact value (dashed curve) and second
order estimate (continuous curve) of the velocity averaged over
initial position vs time, for � � 0:04, u0 � 1.
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Figure 2(b) gives a 2D contour plot of the VDF in the
�	0; v� plane, with the two continuous lines corresponding
to a linear symmetric fit as predicted by the above modu-
lation estimate. We observe a systematic deviation from
this simple estimate toward v	 as the wave amplitude
increases. For vb larger than v	 we have also observed a
deviation toward v	. This deviation is witness to a syn-
chronization of the electrons with the wave.

It is explained by considering the motion of individual
test electrons. Let x � k0rz� 2�ft, u � k0rv� 2�f, and
� � �k0r

2	0. Then the motion of a test electron with
initial position x0 and velocity u0 is described by the
differential equation �x � � cos�x�, where the dots denote
derivation with respect to time t. This equation of the
classical nonlinear pendulum is analytically integrable us-
ing Jacobi elliptic functions for each particle. Averaging
over the initial position uniformly distributed over one
wavelength, we get the dashed curve of Fig. 3 for a particle
with initial velocity u0 outside the trapping velocity do-
main of the wave (the libration velocity domain of the
pendulum). Using perturbation theory of second order in
� around the unperturbed motion x � x0 � u0t, we esti-
mate this deviation and obtain

hui � u0 � �2f�cos�u0t� � 1=u30 � t sin�u0t�=�2u20�g

� � � � (1)

for the beam velocity averaged over x0. This estimate is
shown as the continuous curve in Fig. 3. As expected, this
estimate with its secular term diverges from the exact
prediction after a finite time T. This time can be estimated
as the inverse of the width of the frequency spectrum
associated to the exact velocity modulation (estimated by
�=u0 to first order in � for a particle with initial velocity
u0); i.e., T � u0=�. The continuous curve shows that the
average velocity of the particles having a given initial
velocity but arbitrary phase oscillates with the pulsation
FIG. 4 (color online). Measured velocity distribution function
for a single wave with phase velocity 4:06� 106 m=s and
amplitude 18 mV vs emitting antenna position z from the gun
end; second order estimate of mean test beam velocity (continu-
ous curve).
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u0 which corresponds to the velocity mismatch between
the wave and the beam. At the output of the TWT, we
observe the test beam after interaction over a given length
Lwith the wave. This produces the overall synchronization
of Fig. 2(b) because t � L=vb � 0:13 �s is smaller than
2�=u0 � v	=�fjvb � v	j� � 0:54 �s, so that the beam
experiences the first nonlinear synchronization of Fig. 3
(which occurs at the first minimum of either curve, i.e., for
u0t� 4).

We now keep the wave amplitude constant and vary the
interaction length z by moving the emitting antenna along
the helix. Figure 4 is obtained by superposing the test beam
VDF measured at the output of the helix for 100 different
antenna positions starting at the gun end of the TWT and
spaced every 2.5 cm. We first notice a periodic velocity
bunching of the VDF with a spatial period Lb which can be
derived as follows. Intuitively, if the electron transit time
Lb=vb over a length Lb differs from the wave propagation
time Lb=v	 by one wave period 1=f, all electrons have
undergone a complete acceleration-deceleration cycle and
thus recover their initial velocity. This yields Lb �
vbv	=�fjvb � v	j� � 0:76 m which is indeed the mea-
sured periodic bunching length. The bunching explains
why the VDF is peaked in Fig. 4; indeed there is a mini-
mum spreading of the VDF. Finally note that the amplitude
of the beam velocity modulation increases with z because,
when the probe comes closer to the output, the wave
amplitude is less damped along the SWS.

A closer look at the color contours of Fig. 4 shows that
the average velocity of the test beam oscillates with z. The
continuous curve superimposed in the contour plot is the
second order estimate of the phase averaged velocity for
the measured wave amplitude of 0.10 V when the wave
damping k0i � 0:13 m�1 is also included [Eq. (1) corre-
sponds to k0i � 0]. The same curve is plotted in Fig. 5 and
compared to the mean beam velocity computed from the
measured VDFs of Fig. 4. As shown by the typical error
bar, the agreement between measurement and theory is
very good.
FIG. 5 (color online). Mean test beam velocity measured from
Fig. 4 (shaggy curve joining data), estimated by second order
perturbation theory (smooth curve).
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We now recall why the kind of synchronization dis-
played by Fig. 2(b) is at the origin of Landau damping.
We first explain this synchronization intuitively [5].
Consider two passing particles with the same velocity v
located at t � 0 symmetrically with respect to the wave
potential bottom. At first order in perturbation theory, they
have exactly opposite accelerations over a small time �t.
However, second order perturbation theory incorporates
the fact that the particle whose velocity is going away
from the phase velocity experiences later on a smaller
acceleration than the one coming closer. Therefore the
second order average effect is indeed a synchronization
over a small time �t & 4=u0. These particles may be cast
in two groups: one slower than the wave, and one faster. If
the particle VDF has a negative slope at the wave phase
velocity, particles gain overall momentum in the synchro-
nization process, and vice versa for a positive slope. The
collective effect of momentum balance is a feedback on the
wave which loses or gains momentum, i.e., damps or grows
accordingly. This is the mechanical origin of Landau
damping for a single wave.

We can also estimate more precisely the range of veloc-
ities where wave-particle momentum exchange is maxi-
mum. From the argument of the cosine in Eq. (1), we see
that �t must be compared with ��u0� � ju0j

�1 typically.
Now imagine the wave amplitude evolving exponentially
in time with a growth or damping rate  . Then, after a time
j j�1, the particles are no longer subjected to the same
‘‘constant’’ amplitude wave. This sets a time bound on the
applicability of the perturbative picture of Eq. (1). Strongly
nonresonant particles, such that ��u0� � j j�1, have the
vanishing nonlinear velocity change displayed for large t
by the dashed curve in Fig. 3. Resonant or almost resonant
particles, such that ��u0� � j j�1, have the vanishing
nonlinear velocity change displayed by the curves in
Fig. 3 for t ’ 0. In contrast, particles such that ��u0� �
j j�1, i.e., ju0j �  , have the kind of synchronization
displayed in Fig. 2(b).

This intuitive picture can be made rigorous by describ-
ing wave-particle interaction as the self-consistent evolu-
tion of a one-dimensional system of N particles in one
electrostatic wave [7]. It is defined by a Hamiltonian [3,11]
which describes on an equal footing the evolution of the
wave, with conjugate variables �I; "�, and that of the par-
ticles, with conjugate variables �pl; zl�; I is the wave en-
ergy divided by 2�f. The corresponding dynamics
conserve the total wave-particle momentum P �PN
l�1 pl � k0rI. This constant reveals that a change of

particle momentum impacts on the wave amplitude 	 /

I1=2. Reciprocally, the overall particle momentum change
is quadratic in the wave amplitude as hinted by Eq. (1). The
self-consistent Hamiltonian enables us to recover the
Landau effect for the wave and to prove that it corresponds
to a synchronization of the particles with the wave [3–5];
the time average force corresponding to this synchroniza-
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tion is maximum for particles with a relative velocity jvj �
j j=�

���
3

p
k0r� in the wave frame.

In conclusion, a basic wave-particle interaction experi-
ment has been performed in a TWT with a test electron
beam. The observed amplitude and spatial evolution can be
directly related to the temporal evolution usually investi-
gated in perturbation theory. It shows the first direct ex-
perimental evidence of beam synchronization effects
responsible for Landau damping of a single wave. For a
broad spectrum of waves, this damping is theoretically
linked to a quasilinear diffusion [3–5,12,13], and the re-
cent experimental proof of the transition to chaos in the
presence of two or more waves [14] was a step in the
direction of experimental evidence for such a diffusion.
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