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The orbits of fluid particles in two dimensions effectively act as topological obstacles to material lines.
A spacetime plot of the orbits of such particles can be regarded as a braid whose properties reflect the
underlying dynamics. For a chaotic flow, the braid generated by the motion of three or more fluid particles
is computed. A ‘‘braiding exponent’’ is then defined to characterize the complexity of the braid. This
exponent is proportional to the usual Lyapunov exponent of the flow, associated with separation of nearby
trajectories. Measuring chaos in this manner has several advantages, especially from the experimental
viewpoint, since neither nearby trajectories nor derivatives of the velocity field are needed.
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Boyland et al. [1] showed that strong chaos can be
induced through topological obstacles moving in a two-
dimensional fluid. Their system consisted of three rods
whose repeated interchange led to complicated braiding
of material lines. Chaos ensued as a consequence of the
topology: Thurston-Nielsen theory [2,3] guarantees the
existence of a region of the flow which has pseudo-
Anosov dynamics. In practical terms this means this region
has extremely strong chaotic properties—almost every
point exhibits exponential stretching—leading to good
mixing [4]. Thurston-Nielsen theory does not say how
large the pseudo-Anosov region is (it could even have
zero measure), but in physical and numerical experiments
it has usually been found to be sizeable and localized near
the rods (though see [5] for an example where the region is
too small to be important for mixing). Physically speaking,
material lines ‘‘snag’’ on the rods, and if the rods have a
complicated braiding motion then the length of material
lines must grow exponentially.

More recently, Boyland et al. [6] applied the theory
where vortices serve as topological obstacles. Several vor-
tices orbited each other and the authors classified the
braiding properties of the different configurations.
Vikhansky [7] pushed this a step further: he studied the
properties of freely moving rods (which he called discs) in
a two-dimensional cavity flow. In this case the braiding
arises from the chaotic motion of the rods. By mapping
each element of the braid group to its matrix representa-
tion, a Lyapunov exponent can be found which character-
izes the vigor of topological chaos.

In this Letter we apply topological techniques as diag-
nostic tools to quantify chaos in general two-dimensional
dynamical systems. In the absence of diffusion, in a
two-dimensional bounded domain any fluid particle
(Lagrangian tracer) is a topological obstacle to material
lines. That is, if we choose a material line connected to the
boundary and a reference fluid particle (not on the material
line), both moving with the fluid, then the material line
must bend around the fluid particle as they move.
Deterministic motion forbids the crossing of the line and
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the fluid particle, since at the moment of crossing the fluid
particle would have to belong to the material line, and it
must thus have belonged to it for its entire history.

Since they are topological obstacles, any n fluid particles
can be seen as candidates for topological chaos: the motion
of the particles can exhibit complex braiding. Thus, we can
look for the presence of topological chaos by following
n-tuplets of fluid particles and recording their braiding
history—an ordered sequence of braid group generators.
We then use an appropriate matrix representation of the
braid group to express this sequence as a matrix product.

From random matrix theory, we can expect the resulting
sequence to have eigenvalues that grow or decay exponen-
tially with well-defined Lyapunov exponents, which we
call braiding exponents. If one of these exponents is posi-
tive, then we say that the system exhibits topological
chaos. We will show by an example that the magnitude
of this largest exponent is proportional to the usual
Lyapunov exponent of the flow, defined in terms of sepa-
ration of nearby trajectories. The work presented here is
meant to be a step in the development of what was aptly
described as ‘‘topological kinematics’’ by Boyland et al.
[1].

An obvious advantage of this method over measuring the
chaotic properties of a system by computing the usual
Lyapunov exponents is that there is no need for closely
spaced trajectories. If an experiment yields data for a large
number of fluid trajectories, then all possible n-tuplets can
be used to compute the topological chaos properties (as
long as they belong to the same chaotic region). Neither the
velocity field nor its spatial derivatives are needed; the only
issue is whether the time series is of sufficient length. (For
convenience we use the language of two-dimensional flu-
ids, but the method presented here can be applied to any
two-dimensional deterministic flow.)

Historically, the focus was on periodic particle orbits
before moving rods were considered [3]. Here the new
ingredient is that the orbits are chaotic and determined
explicitly by numerical methods. The association of arbi-
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trary particle orbits with braids group elements was first
proposed by Gambaudo and Pécou [8].

We now describe the method, which we mean to keep as
simple as possible for easy implementation. This is essen-
tially the same technique as used by Boyland et al. [6] for
the braiding of vortices and Vikhansky [7] for freely mov-
ing discs. Our goal is to map the motion of n particles onto
elements of the braid group.

First project the position of the particles onto any fixed
reference line (which we choose to be the horizontal axis),
and label the particles by i � 1; 2; . . . ; n in increasing order
of their projection [9]. A crossing occurs whenever two
particles interchange position on the reference line. A
crossing can occur as an ‘‘over’’ or ‘‘under’’ braid, which
for us means a clockwise or counterclockwise interchange.
We define the braid �i as the clockwise interchange of the
ith and (i� 1)th particles, and ��1

i as their counterclock-
wise interchange, for i � 1; . . . ; n� 1. These elementary
braids are the generators of the Artin n-braid group [10].

Assuming a crossing has occurred between the ith and
(i� 1)th particles, we need to determine if the correspond-
ing braid generator is �i or ��1

i . Look at the projection of
the ith and (i� 1)th particles in the direction perpendicular
to the reference line (the vertical axis in our case). If the ith
particle is above the (i� 1)th at the time of crossing, then
the interchange involves the group generator �i (we define
‘‘above’’ as having a greater value of projection along the
perpendicular direction). Conversely, if the ith particle is
below the (i� 1)th at the time of crossing, then the inter-
change involves the group generator ��1

i . Figure 1(a) de-
picts these two situations.

The method just described might seem to detect spurious
braids if two well-separated particles just happen to inter-
change position several times in a row on the reference
line, as shown in Fig. 1(b). However, this would imply a
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FIG. 1. Detecting crossings: (a) Two possible particle paths
that are associated with different braid group generators. (b) Two
crossings that yield no net braiding. The reference line used to
detect crossings is shown dotted, and the perpendicular lines
used to determine the braid generator are shown dashed.
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sequence of �i and ��1
i braids, since which particle is the

ith one changes at each crossing. When composed together
these crossings produce no net braiding at all.

We now select a matrix representation for the generators
of the braid group [1,7]. These matrices are given by the
Burau representation [11,12] of the n-braid group, which
consists of �n� 1� � �n� 1� matrices defined by

��i�k‘ � �k‘ � �k;i�1�‘i � �k;i�1�‘i; (1)

with inverses

���1
i �k‘ � �k‘ � �k;i�1�‘i � �k;i�1�‘i; (2)

where i; k; ‘ � 1; . . . ; n� 1 and we set �k;0 and �k;n to
zero. (For simplicity, we do not distinguish between the
elements of the braid group and their matrix representa-
tion.) The determinant of each of these matrices is unity,
and they satisfy the ‘‘physical braid’’ conditions [10]:
�i�j � �j�i for ji� jj 
 2, and �i�i�1�i �

�i�1�i�i�1. The matrices (1) and (2) can be understood
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FIG. 2. Braiding factor (largest eigenvalue of ��N�) as a func-
tion of time for a triplet of particles (a) without topological chaos
(� � 0:5), and (b) with topological chaos (� � 13). Note that in
(b) the vertical axis is logarithmic.
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as arising from the lengthening of line segments tied to the
particles as the particles braid around each other [1,7].

As we detect crossings, we compute the running product
��N� of all the braid group elements

��N� � ��N� . . .��2���1�; (3)

where ���� 2 f�i; ��1
i ji � 1; 2; . . . ; n� 1g and N�t� is the

number of crossings detected after a time t. Now ��N� is the
product of a sequence of (possibly random) matrices. We
define the braiding factor to be the largest eigenvalue of
��N�. According to Oseledec’s multiplicative theorem [13],
we can express the time asymptotic exponential growth
rate of the braiding factor by a (non-negative) Lyapunov
exponent, which we call the braiding exponent, defined by

braiding exponent � lim
t!1

1

t
logjbraiding factorj: (4)

The braiding exponent is a function of the number n of
braiding particles. If the exponent is positive, then we say
that the sequence of braids exhibits topological chaos.
Note that the braiding exponent has units of inverse time,
so that if the frequency of crossings decreases then the
exponent also decreases.

We illustrate the method using the blinking vortex flow
(eggbeater flow) of Aref [4]. The flow consists of two
spatially fixed vortices with opposite circulation that act
alternately in time. It has the advantage of being confined
to a bounded circular domain and of exhibiting chaos for a
large enough value of the circulation �.

Figure 2(a) shows the braiding factor for three particles
(n � 3) as a function of time for � � 0:5. For the initial
condition chosen, only one particle is undergoing chaotic
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FIG. 3. Line-stretching and Lyapunov exponents plotted vs the
braiding exponent for three particles (n � 3) and circulation �
varying from 8 to 20. All the exponents increase monotonically
with circulation.
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motion; the other two move in periodic orbits with incom-
mensurate frequencies. Two features are evident in
Fig. 2(a): the braiding factor grows more or less linearly,
and it regularly returns to unity. Because of the linear
growth, the braiding exponent for this triplet of trajectories
is zero.

Figure 2(b) shows the same system (with the same initial
condition for the triplet of trajectories) but for � � 13,
making the system chaotic almost everywhere. In this case,
the braiding factor grows exponentially, and it never re-
turns to unity (except at the very beginning). This is the
signature of topological chaos: the braiding exponent for
the triplet is about 0.2. For large enough time, the exponent
is the same for any triplet initially within the same chaotic
region.

Of course, the braiding exponent is most useful if it
correlates well with the Lyapunov exponent based on the
exponential separation of trajectories. The braiding expo-
nent is a lower bound on the rate of stretching of material
lines [1,7] (the topological entropy), which in turn is
correlated with the Lyapunov exponent. Figure 3 shows
the two types of exponents (braiding and Lyapunov) plot-
ted against each other for different values of the circulation
in the blinking vortex flow.

The relationship between the two is almost linear: both
the Lyapunov and braiding exponents increase monotoni-
cally with circulation. This is consistent with the exponents
measuring the same underlying ‘‘degree of chaos.’’ There
is a similar correlation between the braiding exponent and
the rate of stretching of material lines.

Figure 4 shows the behavior of the braiding exponent as
a function of the number n of braiding particles. For n � 1
the braiding exponent is undefined, since one particle
cannot braid around itself. For n � 2 the exponent is al-
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FIG. 4. Braiding exponent as a function of the number of
braiding particle orbits, for an odd and an even number of
particles.
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ways zero (our representation of the 2-braid group contains
only the identity). For n 
 3 the exponent evolves along
different curves depending on whether n is odd or even;
these converge together for large n. Since the braiding
exponent is a lower bound on the topological entropy of
the flow, the curve should saturate for large n: simulations
were performed all the way to n � 100 (not shown) with
slow growth of the braiding exponent but no sign of
saturation. One reason for the growth of the braiding ex-
ponent with n is simply that more braiding particles give
more crossings for a given length of time. It may thus be
advantageous to use many particles when the length of the
time series is limited, as long as the particles exhibit
sufficiently nontrivial braiding [not simply crossing over
each other as in Fig. 1(b)]. Note that the n-particle braiding
exponent exhibits a linear relationship with the Lyapunov
exponent, just as it did for n � 3 (Fig. 3).

The diagnostic approach presented here sheds some
light on Vikhansky’s results [7]: he observed an increase
in the chaotic stretching properties of his cavity flow of
about 30% when freely moving rods were present.
Compared to the topological effect observed by Boyland
et al. [1], this is a modest increase. This is because the rods
in Vikhansky’s case are no more topological obstacles than
any fluid particle. Their presence modifies the flow and so
increases its chaotic properties, but this is not a topological
effect. In other words, in Vikhansky’s case the chaos is
already present even without rods, whereas in Boyland
et al. the rods cause the chaos.

The measure of chaos presented here is attractive be-
cause of its emphasis of global aspects of the flow.
Lyapunov exponents are difficult to measure because we
try to infer from them a global quantity (the Lyapunov
exponent associated with a given region of the flow) from
08450
local measurements (the rate of separation of nearby tra-
jectories). These local measurements are difficult for an
experimentalist to make, so we suggest focusing on the
global braiding of particles instead.

The author thanks Francesco Paparella, Joseph Lacasce,
Edward Spiegel, Philip Boyland, Matthew Finn, and
Andrew Gilbert for helpful discussions.
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