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Mixing of Non-Newtonian Fluids in Steadily Forced Systems
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We investigate mixing in a viscoelastic and shear-thinning fluid—a very common combination in
polymers and suspensions. We find that competition between elastic and viscous forces generates self-
similar mixing, lobe transport, and other characteristics of chaos. The mechanism by which chaos is
produced is evaluated both in experiments and in a simple model. We find that chaotic flow is generated by
spontaneous oscillations, the magnitude and frequency of which govern the extent of chaos and mixing.
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Fluid mixing is an important process in many industries,
nature, and everyday life. The discovery that simple, non-
turbulent velocity fields can evolve into complicated mo-
tions through chaotic advection [1] has generated a great
deal of interest in fluid mixing [2—6]. Previous research has
been mainly restricted to Newtonian fluids, often in ideal-
ized model flows [2,5,6]. Most practical viscous fluids, by
contrast, contain polymers or solids (e.g., pastes and col-
loids) and are not Newtonian. Such fluids are extremely
common in both industry (e.g., cell fermentation and poly-
mer processing) and nature (e.g., lava and synovial fluid).
An important feature of many non-Newtonian fluids is that
they often exhibit both viscoelasticity and shear-thinning
viscosity.

Most mixing investigations have considered only
“ideal” constitutive behavior (i.e., either elastic or shear-
thinning). Fluids that are viscoelastic but not shear-
thinning (“‘Boger fluids’’) [7], are often used to investigate
the effects of viscoleasticity on mixing [8,9] and fluid
instabilities [10—12] at low Reynolds numbers (Re). For
example, Groisman and Steinberg [13] showed an in-
creased resistance to forcing, irregular flow patterns, and
other complex features at negligible inertial stresses in a
simple flow. These effects appear when the elasticity num-
ber, El = Wi/Re, is large (>1), where Wi (Weissenberg
number) is the product of the characteristic rate of defor-
mation () and the longest fluid relaxation time (A). These
findings imply that viscoelastic effects may enhance mix-
ing, as has also been shown in a curved channel [9]. By
contrast, experimental and numerical studies of mixing of
constant viscosity, elastic fluids in 2D time-periodic flows
have shown that elasticity can either increase or decrease
chaotic motion, apparently because the effect of elasticity
on mixing depends on the mixing protocol [8,14—-16]. In a
similar geometry, a computational study found that shear-
thinning viscosity without elasticity decreases both the rate
and extent of mixing [17]. However, for non-Newtonian
fluids that are both shear-thinning and viscoelastic, it is
difficult to predict a priori how these effects will interact.
The few available mixing investigations of shear-thinning
viscoelastic fluids have focused either on macroscopic
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aspects of the flow [18,19] or have been of qualitative
nature [20]. As a result, the mechanisms responsible for
mixing of such fluids are not fully understood.

In this Letter, we report the onset of spontaneous chaos
in a simple geometry, a tank stirred by a single axisym-
metric disc in a fluid that is both shear-thinning and visco-
elastic. We analyze the mixing mechanism in experiments
and in a simple model. In Fig. 1, we display results of dye
advection experiments using planar laser induced fluores-
cence. Here a laser sheet illuminates a plane within the tank
that is injected with a blob (3 ml, approximately 1 inch
from the disk tip) of a neutrally buoyant passive fluorescent
tracer (Rhodamine G6). As the dye advects, areas illumi-
nated correspond to intersections of the laser sheet with the
dye. In Fig. 1(a), we show an illuminated slice through the
axis of the mixing tank filled with a Newtonian fluid
(glycerin, p = 1.2 g/cm?, 5 = 700 cp) at Re = 10, de-
fined as Re = pND?/n, where N is the impeller agitation
speed in Hz, D is the impeller diameter (7.5 cm), p is the
fluid density, and 7 is the fluid viscosity. The snapshot
reveals closely spaced, concentric sets of rings surrounding
elliptic points, demonstrating that fluid does not mix down
to very small length scales. This is as expected: no signs of
chaotic mixing are observed since at low Re every azimu-
thal slice through the system is identical and the flow is
effectively steady, 2D and integrable (this remains the case
up to Re = 190). Mixing occurs only by slow diffusion and
patterns remain unchanged on scales of hours.

Figure 1(b) reveals an entirely different behavior if we
replace the Newtonian fluid with a 1%-aqueous carboxy-
methyl cellulose (CMC, 2.7 X 10° MW) solution which is
both shear-thinning and viscoelastic [21] at Re = 13.5 and
Wi = 2.75. A lobe formation process is now observed.
Lobe structures, identified by the green line in Fig. 1(b),
indicate that the ingredients of chaotic mixing—folding
and stretching—are present. In addition, two distinct flow
regimes are observed: a “‘high-shear” region identified by
the red line in Fig. 1(b), located around the disk, and an
“elastic’” region that spreads throughout the rest of the
tank. The former region is characterized by Newtonian-like
flow patterns, where fluid motion is proportional to applied
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FIG. 1 (color online). Flow patterns of a tank (D7 = 24 cm
and H = 32 cm) stirred by an axysymmetric disc. (a) Newtonian
fluid (glycerin) at Re = 10 reveals concentric rings and no signs
of chaos. (b) Lobe formation and chaotic motion in a 1%-
aqueous solution of CMC (A = 0.55s) at Re = 13.5 (Wi =
2.75). Shear rate dependent viscosity data are fitted to 1 =
1ol1 + (k)*]"/2, where 5, = 3000 cP is the zero-shear-rate
viscosity, n = 0.7 is the power law index, and x = 1.2 is a time
constant. Yellow and blue lines show flow direction. Red line
delimits the high-shear region. Green line contours a single lobe.

stress. Fluid in this region is expelled radially from the disk
toward the tank walls (yellow arrows). Surrounding this
inertial region is an elastic region where flow is reversed.
Flow here convects dye vertically away from the disc (blue
arrow) and recirculates it along the tank walls and then
radially inward toward the disk again. Thus the mixing
mechanism here seems to rely on an interaction between
these two regions with opposite flow directions.

We can understand the regions of flow reversal for shear-
thinning viscoelastic fluids in the following way: polymer
molecules can stretch in curvilinear shear flows and often
align themselves along the direction of the primary flow.
The stretching of polymer molecules along streamlines
leads to a normal stress difference N1 = 749 — 7,,, where
r, 8, and z are cylindrical coordinates. This normal stress
difference N1 = —21”(y)A(y)¥*> produces a volume
force N1/r acting inward in the radial direction causing
flow reversal. Here, we are assuming an Oldroyd-B model
modified to account for shear-thinning viscosity, where n”
is the polymer viscosity defined as n” = n — n® and 5’ is
the solvent viscosity [12,22]. This volume force, however,
is counterbalanced by the pressure gradient dp/dr. Near
the disc, where velocities are large, dp/dr > N1/r and
flow reversal is not observed. Far from the disc, in regions
where dp/dr < N1/r, we observe flow reversal.

We can identify the mechanism by which lobes, and
consequently chaotic mixing, arise by examining a series
of dye advection experiments, as shown in Fig. 2(a)—2(c).
The frames presented are consecutive snapshots of the
evolution of the partially mixed structure. The time lapse
between frames is about 10 s. The mixing structure here
oscillates, as can be illustrated by tracking a region of the
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FIG. 2 (color online). Periodic flow oscillations of a shear-
thinning elastic fluid (Re=13.5, Wi=2.75): snapshots of the
mixing structure of 1% CMC 10 s apart. (a) initial, (b) Ar =
10 s, (¢c) At = 20 s. Yellow line identifies the upper segregated
region. Green arrow (b) points to the region where lobes are
created. Dashed red square (c) delimits area of interest for
modeling. Periodicity of velocity field is also revealed via PIV
(d) and power spectra (e) (arrow points to well-defined peak).

tank (upper segregated region—yellow lines) over time.
By comparing frames (a) and (b), we find that the upper
segregated region in frame (a) is larger and of different
shape than in frame (b). As time evolves, the shape of the
upper segregated region returns to its original state peri-
odically, as shown in frame (c). However, the recurrent
dyed structure incorporates more material on each succes-
sive period. Corresponding oscillating behavior appears in
variations of the size and shape of the “‘high-shear” region.
Close examination of fold structures reveals the advance of
a train of folds originated at the join between disc and shaft
[arrow in Fig. 2(b)]. Behavior in this small region, where
the “elastic’” and ‘“‘high-shear” regions meet, seems to be
central to the initiation of the lobes.

To quantify the time dependence of the flow (under
steady forcing), we sample a small region between the
tip of the disk and the tank wall, and average the magnitude
of the velocity measured along a short path line using
particle image velocimetry (PIV). Sampling times are
long enough to ensure the accuracy of velocimetry mea-
surement (1/4 s), but are shorter than the characteristic
frequency of the fluid motion (close to 1 s). A representa-
tive sequence of velocity records and corresponding power
spectrum for increasing agitation speeds is presented
Fig. 2(d) and 2(e). These data show a well-defined periodic
time dependence of the velocity in this flow at Re = 13.5
and Wi = 2.75. The peak in the power spectrum [arrow in
Fig. 2(e)] is almost 4 orders of magnitude higher than back-
ground noise, confirming the appearance of Fig. 2(a)—2(c)
that the flow is periodically perturbed.

We examine the effects of agitation speed on flow be-
havior at 150 RPM (Re = 5.63, Wi = 1.38), 300 RPM
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(Re = 13.5, Wi =12.75), 500 RPM (Re = 37.5, Wi =
4.58), and 750 RPM (Re = 84.38, Wi = 6.88). The basic
flow structure remains unchanged in all four cases; flow
reversal and lobe formation are invariably present (for
Wi < 0.9, flow reversal is still observed, but there is no
lobe formation, i.e., no mixing). However, the regular high-
shear region grows as the agitation speed is increased.
Mixing efficiency, which is assessed by recording the frac-
tional area of the tank covered by the dye as a function of
disc revolutions, therefore worsens as agitation speed is
increased [Fig. 3(a)]. Area coverage is closely modeled as
an exponential process, A = A, (1 — e XV), where A«
is the maximum area covered and K is the mixing rate. For
all cases, coverage asymptotes at about 88%, but the rates
are significantly different; 3.2 X 1074, 9.4 X 1073, 6.3 X
1073, and 5.7 X 1073 rev™! for 150, 300, 500, and 750
RPM, respectively. This result is counterintuitive insofar as
the effects of elasticity would be expected a priori to be
accentuated at higher shear rates and lower fluid viscosity.

The same trend is observed when quantifying the extent
of chaotic mixing introduced by lobe formation in the
system by the Melnikov method; single-lobe area may be
considered as an effective measure of the degree of chaos
in the system [23]. We therefore measure lobe areas from
experimental snapshots by computing numbers of occu-
pied pixels in digital images. We find that the lobe area
(and hence the rate of chaotic mixing) decreases as fre-
quency is increased. The cause of this effect appears to be
that at high frequencies, lobes do not have enough time to
fully stretch before folding, and so lobe sizes are small,
which in turn hinders the mixing performance of the elastic
region. At sufficiently low speeds, by contrast, lobes
stretch more before folding, resulting in larger lobes that
intrude further into the flow domain [Fig. 3(b)]. Since flow
oscillation frequency (f) increases with agitation speed
(f =43 X 1072N"*8) [Fig. 3(b), inset], mixing effi-
ciency is inversely related to agitation speed, in agreement
with the mixing rate results. We speculate, but cannot
confirm, that this flow oscillation may be directly linked
to the longest fluid relaxation time (A). This analysis is
consistent with prior work that also reports oscillatory
elastic instabilities in stressed viscoelastic fluids
[10,12,20]. We believe that the instabilities observed in
our experiments occur in regions where 7P/7% =
n°(y)y7/m*y > 1, where 77 = 7 — 75 = ” ()7 is the elas-
tic stress and 7° = 7°+ is the viscous stress. This threshold
[n”(y)/7*]is a function of radial position since ¥ varies in
the radial direction due to the large gap between the outer
wall and the disc. Hence, near the disc, where 7y is high, the
contribution of the polymer to the viscosity is small, and no
instability is observed. As we move toward the tank wall,
the elastic stresses (polymer molecules acting on the flow)
start to increase as a power law and the region becomes
susceptible to instabilities and oscillations.

To elucidate the mechanism by which lobes are formed
and fluid is transported, we construct a map-based simula-
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FIG. 3. Mixing efficiency worsens with agitation speed.
(a) The rate by which a passive dye spreads is inversely related
to agitation speed (Re and Wi). (b) Lobe-area measurements
indicate that the extent of chaos decreases as frequency (agita-
tion speed) is increased. Map results show that lobe area de-
creases with map frequency (7). Insert: oscillation frequency
increases with agitation speed.

tion intended to capture the iterative mapping described in
Fig. 2. We focus our analysis on the right lower “quadrant”
of the flow identified by the dashed red square in Fig. 2(c).
The use of a periodic mapping is motivated by our experi-
mental results, which indicate that the periodic oscillation
of the “high-shear” region is correlated with the periodic
formation of lobes. In short, flow visualization experiments
show that when the “‘high-shear” region periodically con-
tracts, fluid is drawn in and lobes are formed [green arrow
in Fig. 2(b)], and as the high-shear region grows, the lobes
are released downstream into the “‘elastic’” region. The
lobes are thereafter transported throughout this region
and back into the “high-shear” region.

Thus for our simulation, we construct a composite map
to reproduce this behavior in a 2D square domain. The
mapping consists of two parts: first, a circulatory flow
mimicking the primary circulation within the red square
of Fig. 2(c), and second, a periodic forcing that draws and
expels material in the upper right quadrant of the square
domain. Both parts of the mapping are area conserving.
The circulatory flow is explicitly:

Xo1 = X, — k"sin*(Y,) (D
Yn+1 = Yn + kl*Sinz(Xn+1)r (2)

where X, and Y, are Cartesian coordinates at time n, and
kq defines the speed of the primary circulation [indicated
by black arrows in Fig. 4(a)]. This map is supplemented by
a secondary map defining periodic forcing only for points
in the upper right quadrant [red dashed region in Fig. 4(a),
where x > 0 and y > 0]:

Up+1 = u/n + kz*Sinz(vln) (3)

Up+1 = Uln - kz*Sinz(un+1)’ (4)

where u' = u — k,"*sin*(v) and v’ = v + k,"sin?(u’). The
secondary map has strength k, = ko[1 — cos(Qa*n/7)],
where k; is the perturbation strength and 7 defines the
frequency of the perturbation. If the strength of the sec-
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FIG. 4 (color online). (a) A 2D square lattice (black arrows) is
periodically perturbed with a secondary map (red dashed lines)
to mimic the experiments. The region of interest is the left lower
quadrant of the tank [red dashed line on Fig. 2(c)]. Map is able to
capture main features of the flow; compare (a) to (b). As
frequency increases (7), lobe area decreases and dye coverage
diminishes for (b) 7 = 15, (¢) 7 = 20, and (d) 7 = 25. Lobe area
vs 7 data is presented in Fig. 3(b).

ondary map is small (kg < 1), the “high-shear” region is
comparatively weak, and we recover a nearly integrable
flow with poor mixing.

This model faithfully captures the qualitative features of
lobe formation [Fig. 4(b)], stretching, and transport seen in
our experiment [cf. Fig. 4(a)]. In this simulation, we track
an initial line of 5000 points for 300 iterations. In the
context of this map, the mechanisms by which lobes are
formed and transported can be understood by being dis-
sected into two actions: an “inner” periodic circulation
that is responsible for the formation of lobes and an
“outer” circulation that is responsible for their transport.
By increasing the inner map period (7), we obtain larger
folds, since folding frequency is reduced and stretching
time is consequently prolonged [Fig. 4(b)—4(d)].

We interpret the results of this mapping as indicating
that oscillations seen in our experiments may be produced
at the interface between the two circulations observed,
possibly through a competition between the principal re-
laxation time of the viscoelastic fluid (A) and the forcing
strain imposed by the rotating disks. The simplified map-
based simulation also indicates, in agreement with pre-
vious observations [6,24], that the action of kinematic
folding can be separated from the kinematics of gross
material transport in low Re mixing systems. In other
words, in systems such as the one considered in this
Letter, mixing rates are not only a function of exponential
stretching and folding, but are also dependent on transport
throughout the vessel.

In conclusion, steady stirring of a shear-thinning and
viscoelastic fluid produces the spontaneous emergence of
chaos characterized by lobe formation and a stretching and
folding engine that is driven by the interaction of a small

inertial- and a large elastic-transport regions. We find that
both the velocity field and flow structure are time depen-
dent. The link between flow oscillations and the competi-
tion between fluid elasticity and imposed strain remain to
be comprehensively investigated. The frequency of these
oscillations is responsible for the mixing efficiency; high
frequencies yield low quantitative extents of chaos and
poor mixing efficiency. This is reproduced in a transport
model in which a simple stretching and folding engine acts

to generate iterated lobes.
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