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Simple Route to Strong-Field Coherent Control
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Coherent-control schemes to manipulate weak-field interactions are generally invalid at stronger fields,
since strong-field interactions are accompanied by level power broadenings and level shifts that usually
elude simple analytical treatments. Here we show that a broad subgroup of weak-field solutions (those
with real fields, i.e., fields with only one quadrature in the complex plane) can be extended to the strong-
field regime while retaining their properties. The salient feature of these fields is a symmetry that cancels
out power broadening effects. Such fields can be generated from ultrashort coherent pulses or from
incoherent broadband down-converted light. Weak-field coherent-control approaches based on these
solutions can therefore be extended to the strong-field regime as we demonstrate in a two-photon
absorption experiment in atomic cesium.
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Ultrashort laser pulses have become the preferred tool
for control of atomic and molecular processes due to their
high peak intensity and short time duration. A major
difficulty that results from the broad spectral bandwidth
of femtosecond pulses is the loss of spectral selectivity,
since all the transitions within that bandwidth may be
excited. This difficulty can be overcome by quantum
coherent-control techniques, using the interference be-
tween different quantum paths that reach the same final
state. The central idea is to exploit constructive quantum
interference in order to direct the system into a desired final
state, while destructive interference attenuates the quantum
amplitude of undesired states [1–3].

Coherent-control schemes are easily implemented to
control weak-field interactions, due to the simple relation
between the optical field and the resulting excitations. In a
series of investigations it was demonstrated how manipu-
lation of the spectral phase function can control the exci-
tation field to achieve a resolution higher by orders of
magnitude than the spectral bandwidth of the pulse [4–
9]. A nonresonant two-photon absorption (TPA) process
can be reduced and even eliminated using shaped pulses
[4,5]. Similarly, resonant TPA was enhanced significantly
beyond the level achieved by a transform limited pulse
[6,7]. These concepts were also applied to achieve high
spectral resolution coherent anti-Stokes Raman spectros-
copy with broadband pulses [8,9].

For many practical applications, and, in particular, for
effective control of chemical processes, strong-field inter-
actions have to be considered. In general, weak-field
schemes will not remain valid for stronger fields, since
strong-field interactions are accompanied by level broad-
enings and level shifts that usually elude simple analytical
treatments. An extensive effort has been directed in recent
years towards the achievement of selective population
transfer. Various schemes have been proposed, based on
an adiabatic approach [10]. A non adiabatic scheme, pro-
posed by Wollenhaupt et al. [11], demonstrated control
over the photoelectron spectrum excited by strong fields,
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and investigated its dependence on the laser intensity and
temporal shape. In this paper we show that it is possible to
extend coherent-control schemes that were developed for
weak fields into the strong-field regime, and thus retain the
selectivity and the intuition developed by perturbative
analysis. This extension is possible if one is willing to
use fields with only one quadrature, as explained below.

We begin by reviewing the essence of weak-field con-
trol. Simple perturbation analysis predicts that a femto-
second laser pulse with an electric field "�t� driving a two-
level system from the ground level jgi to a final level jfi
excites an amplitude ag!f / E�!0�, where E�!� is the
Fourier transform of "�t� and !0 � �Ef � Eg�= �h is the
transition resonant frequency. A transition is therefore
excited by a single frequency component, hence excitation
amplitudes to a number of final states could obviously be
adjusted through control of the spectrum.

This result has been generalized to N-photon transitions,
where the excitation amplitude following the pulse is
proportional to the resonant Fourier component of "N�t�
[4]:

aNg!f�t ! 1� �
�N

fg

�i �h�N
Z 1

�1
"�t�N exp�i!0t�dt



�N

fg

�i �h�N
EN�!0� (1)

where �N
fg is the effective dipole matrix of the N-photon

transition and EN�!� is the Fourier transform of the
N-photon field "�t�N . Here too, the transition probability
of an N-photon transition is dictated only by a single
resonance component of EN�!� [4,12]. EN�!0� is a func-
tion of the spectrum E�!�; and is determined by the
interference between all N-photon combinations that addi-
tively sum to give the transition energy. Spectral phase
manipulations were applied in various weak-field
coherent-control schemes to control the energy content of
this frequency component in order to manipulate nonlinear
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processes [4,8,9]. In all weak-field experiments, a resonant
transition was dictated by a single resonant frequency
component of EN�!�.

Now, as the field intensity increases, this simple rela-
tionship between the excitation amplitude and the spec-
trum of the N-photon field does not remain valid due to
power broadening. We first analyze a one-photon transition
and show that a family of solutions exists which cancels
out power broadening effects completely. We then general-
ize this approach for the case of an N-photon transition.
Eventually, we demonstrate these ideas experimentally
through the control of TPA in the strong-field regime.

The interaction between a two-level system and a laser
field beyond the weak-field regime is described by the
optical Bloch equations (OBE), usually analyzed in a
reference frame rotating at the laser frequency !l.
However, when the laser field is much broader than the
transition, the laser frequency is not well defined and the
atomic transition frequency !0 becomes the natural refer-
ence frequency. The OBE can be then rewritten in the
rotating wave approximation as
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where "�t� is the laser electric field in the rotating frame, w
is the population inversion, and u, v are the atomic dipole
moments in phase and in quadrature with the field, respec-
tively. In this picture, the field driving force can be repre-
sented by a torque exerted to the Bloch vector �u; v; w�.
The torque vector lies in the uv plane and has a magnitude
of j"�t�j and a direction given by the pulse temporal phase.
The Bloch dynamics is governed by successive rotations of
the Bloch vector around a torque vector, which change its
direction with time. In the weak-field regime this is a
succession of small rotations that are commutative. It is
simple to show that this is equivalent to the perturbative
solution of Eq. (1). In the strong-field regime the analysis
becomes more complex. Large rotations around different
axes do not commute, therefore the final population is
determined by the specific temporal shape of the pulse
and not just its total area [11].

The Bloch vector dynamics is greatly simplified if we
constrain the field to be real (Imf"�t�g � 0). In that case, all
the rotations of the Bloch vector are around the u axis only,
and therefore the different field contributions commute.
The OBE then yields the well known solution for a system
initially in the ground state [13]:

w�t� ��cos���t��; v�t� �� sin���t��; u�t� � 0:

(3)

where ��t� is the transient pulse area defined by ��t� �
�
�h

R
t
�1 "�t0� exp�i!0t

0�dt0. The important consequence is
that population inversion following the pulse excitation is
dictated again by a single frequency component, since
��1� / E�!0�.
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While any electromagnetic field is always real, the
reality required here is beyond this trivial one. Here, the
slowly varying envelope of the field, which is generally
complex, should be real, i.e., the optical field should have
only one quadrature. An alternative view is a carrier wave
that is only amplitude modulated. This implies the follow-
ing symmetry condition in the frequency domain:

E�!0 � �� � E��!0 � ��: (4)

This symmetry leads to destructive interference between
the contributions of frequency components above and be-
low the resonance, thus canceling power broadening ef-
fects. This result is rather surprising; either the red-detuned
sideband or the blue-detuned sideband alone would have
induced significant power broadening, yet adding the sym-
metric spectral band (therefore increasing the total pulse
intensity) leads to complete cancellation of the effect.

It is interesting to note that although our discussion
focuses on coherent optical pulses, coherence is not a
necessary feature. It is well known that broadband inco-
herent down-converted light is symmetric around its cen-
tral frequency (!p=2, !p being the pump frequency), and
therefore satisfies Eq. (4) when !0 � !p=2 [5]. Indeed,
with incoherent light the transient area of the field is
unknown, so the transient population transfer cannot be
predicted. However, when the field is real, only one quad-
rature of the atomic coherence, v�t�, is coupled to it. The
other quadrature u�t� is a constant of the Bloch dynamics,
regardless of the temporal shape of the field. This can be
viewed as a classical analogue of the quantum derivation,
previously given by Gardiner [14].

We now extend the above analysis to multiphoton tran-
sitions. Consider a nonresonant multiphoton transition in a
two-level system. Equation (1) predicts that when induced
by a weak femtosecond laser pulse, the amplitude of the
excited state will be determined by EN�!0�. As in the one-
photon case, at higher laser intensities this relation does not
remain valid due to power broadening, and the transition is
dictated by the interference of all spectral components of
EN�!�. A nonresonant multiphoton transition in a two-
level system is analyzed by the OBE, taking "�t�N as the
interacting field [15]. Therefore, we can extend our con-
clusion from the one-photon case, and state that power
broadening in the multiphoton case is cancelled when
"�t�N is real.

In the following we will focus on the case of N � 2,
analyzing coherent-control of TPA transitions in the
strong-field regime. A nonresonant TPA process is dictated
by the complex spectrum of "2�t� given by [4]

E2�!� �
Z 1

�1
E�!=2� ��E�!=2� ��d�: (5)

Spectral phase manipulations of the spectrum E�!� can
be applied to control both the phase and the amplitude of
E2�!�. Selectivity in the weak-field regime was achieved
by maximizing or canceling E2�!0�; where !0 is the two-
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photon transition energy [4]. Selectivity in the strong-field
regime can now be achieved by applying the additional
constraint that "2�t� has to be real. As is evident from
Eq. (5), any spectral phase function which is antisymmetric
around !0=2; for example ��!� � � sin���!�!0=2��,
will maximize E2�!0�. If, in addition, jE�!�j is symmetric
about !0=2, then "�t� and therefore "�t�2 are real. Other
spectral phase functions can drive E2�!0� to be zero. Such
pulse shaping annihilate the transition rate in the weak-
field regime generating a ’’dark pulse’’ [4]. Generally, a
dark pulse at low intensities will not remain dark at higher
intensities due to power broadening. However, it is possible
to find dark pulses with real "2�t�. In particular, for a
spectral phase function ��!� � � cos���!�!0=2��, a
specific value (�0) of � exist for which E2�!0� � 0, while
"2�t� is real. The important result is that this dark pulse is
invariant of the laser intensity. In summary, two spectral
phase functions, both valid also at high laser intensities,
can be applied to achieve selective excitations by either
maximizing or minimizing E2�!0�:

E�!�max � A�!�!0=2� exp�i�0 sin���!�!0=2���;

E�!�min � A�!�!0=2� exp�i�0 cos���!�!0=2���:

(6)

where A�!�!0� is the field amplitude, constrained only
to be a symmetric function around !0=2.

To demonstrate a high spectral resolution in the strong-
field regime, we studied TPA in cesium gas between the
6S1=2 and the 8S1=2 states [Fig. 1(a)]. The TPA is induced
by amplified pulses generated by a multipass amplifier at a
repetition rate of 1 kHz. The amplified pulses consist of a
40 nm bandwidth centered at 800 nm. The TPA rate is
evaluated by measuring the fluorescence at �460 nm due
to spontaneous decay to the ground level through the 7P
level. Spectral phases are applied by a programmable pulse
shaper with a spectral resolution of about 0.6 nm. We
tailored the spectrum with the shaper and filters to achieve
a symmetric spectrum around 822 nm. The fluorescence
signal is filtered out and measured with a photomultiplier
tube and a lock-in amplifier. The collected signal is a result
FIG. 1. (a) Energy level diagram of the two-photon transition
6S ! 8S in atomic Cs. Wavelengths longer than 840 nm are
blocked as they spectrally overlap the 5P3=2 level. (b) Outline of
the experimental setup.
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of an integration over the entire beam profile. We estimate
the intensity at the center of the beam, Imax, to be equiva-
lent to a two-photon pulse area of �max � 3�. An outline of
the experimental setup is presented in Fig. 1(b).

We first applied an antisymmetric spectral phase func-
tion of ��!� � � sin���!�!0=2��. Figure 2 shows the
measured signal as a function of the modulation depth �,
for various values of pulse intensity ranging over an order
of magnitude (black lines). The measured signal is nor-
malized to the population transfer induced by an unshaped,
transform limited pulse of the same laser intensity. This
normalizing value should undergo Rabi oscillations at the
beam center, but due to the averaging over the beam profile
it just exhibits a saturating response. As predicted for the
weak-field regime, the population transfer induced by an
antisymmetric phase function is independent of the modu-
lation depth (dotted black line). This response is main-
tained even when increasing the laser intensity to well
within the saturation regime (solid black line). We next
applied a symmetric spectral phase function of ��!� �
� cos���!�!0=2��. The experimental results are pre-
sented by the gray lines in Fig. 2. In the weak-field regime
we observed strong variations of the population transfer as
� was increased, whereas no population transfer was in-
duced for � � 1:4 (dotted gray line). A similar response is
observed for higher laser intensities. Cancellation of the
population transfer at � � 1:4 is demonstrated to be almost
invariant to the field intensity. The minor deviation from
the weak-field result is related to the existence of an
intermediate P3=2 level at 852 nm, close to the spectral
range of the laser pulse [16]. It is to be noted that since the
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FIG. 2. TPA measurement for periodic spectral phase func-
tions for which "2�t� is real. Two spectral phase functions are
applied: ��!� � � sin���!�!0=2�� (black lines) and ��!� �
� cos���!�!0=2�� (gray lines). The TPA is measured as a
function of the modulation depth � for pulse intensities (at the
center of the beam) of 0:1Imax (dotted line), 0:5Imax (dashed-
dotted line), 0:8Imax (dashed line) and Imax (solid line).
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FIG. 3. TPA measurement for spectral phase function of
��!� � � sin���!�!0=2� � �=4� for which "2�t� has an
imaginary part. The TPA is measured as a function of the
modulation depth � for pulse intensities (at the center of the
beam) of 0:1Imax (dotted line), 0:5Imax (dashed-dotted line),
0:8Imax (dashed line) and Imax (solid line).
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dark pulse is invariant to the field intensity, it is not
obscured by the integration over the beam profile.

We should emphasize the point that the two fields dis-
cussed above, having a real "2�t�, are special. Generally,
complex fields may induce significant power broadening.
For example, by simply shifting the periodic spectral phase
function by �=4 to apply a spectral phase function of
��!� � � sin���!�!0=2� � �=4�, we generate "2�t�
that is composed of three main pulses with relative phases
of i, 0, �i. Figure 3 shows the measured signal as a
function of modulation depth for various values of the
pulse area. In the weak-field regime we observe a smooth
reduction of the signal with increasing � (dashed line).
However, increasing the laser intensity resulted in a sig-
nificant deviation from the weak-field response. As the
laser intensity increases, the fluorescence signal decays
slower as a function of � (dashed-dotted, dashed, and solid
lines), indicating that power broadening plays a significant
role in this case. Although E2�!0� decreases with �, popu-
lation transfer is induced by other spectral components of
E2�!�, hence the slower decrease of the measured signal.

In summary, we have shown that power broadening can
be cancelled when the transition is induced by real fields.
Power broadening cancellation is a result of the destructive
interference induced by symmetry properties of the pulse
spectrum. The direct consequence is that the transition is
dictated by a single frequency component, which allows
the extension of weak-field control schemes into the
strong-field regime. This is true for simple two-level tran-
sitions, as well as for nonresonant multiphoton transitions,
as demonstrated by our TPA experiment. With this scheme,
selective excitation in the strong-field regime can be read-
ily achieved. Although our discussion deals primarily with
08300
shaped coherent pulses, its direct applicability to incoher-
ent broadband down-converted light illustrates the general-
ity of the presented principles. Similar ideas could apply to
other control schemes, such as resonant multiphoton tran-
sition, transient effects [6,7], and Raman transition [8,9].
We believe that the scheme presented here can be utilized
as a ‘‘building block’’ to manipulate more complex strong-
field interactions such as control of wavepacket dynamics,
photodissociation, or ionization.
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