
PRL 94, 081601 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
4 MARCH 2005
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We construct supersymmetric Lorentz violating operators for matter and gauge fields. We show that in
the supersymmetric standard model the lowest possible dimension for such operators is five, and therefore
they are suppressed by at least one power of an ultraviolet energy scale, providing a possible explanation
for the smallness of Lorentz violation and its stability against radiative corrections. Supersymmetric
Lorentz noninvariant operators do not lead to modifications of dispersion relations at high energies
thereby escaping constraints from astrophysical searches for Lorentz violation.
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Introduction.—Recent years have seen an increase in the
number of theoretical studies of Lorentz violation (LV), as
well as intensified experimental efforts searching for LV
signatures in terrestrial, astrophysical and cosmological
settings [1,2]. For example, effective LV at low energies
may arise in string theory due to a nonvanishing back-
ground of an antisymmetric tensor field. Alternative sce-
narios of quantum gravity often predict that at ultrashort
distances particle dispersion relations are modified by
cubic and higher terms in the energy, (see, e.g., [3]),

E2 � p2 �m2 � b1
E3

M
� b2

E4

M2 . . . ; (1)

where bi are some dimensionless constants. Although such
conjectures are undoubtedly very speculative, if true they
could provide a powerful tool of probing microscopic M�1

distances via LV physics.
LV operators can be classified according to their dimen-

sion. Cubic and higher order modifications of dispersion
relations correspond to LV operators of at least dimension
five [4]. According to naive dimension counting, the di-
mension D of an operator determines its scaling �M4�D

with the characteristic energy scale M at which the opera-
tor is generated. Hence, dimension five operators are nec-
essarily suppressed by one power of the ultraviolet scale
M. However even Planck mass (MPl)-suppressed operators
for photons, electrons, and quarks are ruled out by a
number of astrophysical constraints and precision mea-
surements up to �10�5 level [4–7]. Even more serious
problems arise with dimension three and four LVoperators
classified in [8], since there are no dimensional arguments
as to why such operators should be small. Moreover, higher
dimensional operators will in general induce lower dimen-
sional ones through loop corrections with power-law di-
vergent coefficients. Only additional symmetry arguments
may provide genuine suppressions of such lower dimen-
sional operators [4].

An obvious candidate for such a symmetry is supersym-
metry (SUSY). Following the prevailing point of view in
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particle theory, we assume that at ultrashort distances
(close to 1=MPl) SUSY is realized exactly. As the ultravio-
let behavior of SUSY theories are free of potentially dan-
gerous quadratic divergences, it is generally accepted as
being a technical solution to the hierarchy problem. SUSY
is conventionally introduced as a graded extension of the
Poincaré algebra generated by translations, rotations, and
Lorentz transformations, therefore, one might expect that
SUSY is simply incompatible with LV physics. This is not
the case because it is possible to restrict all considerations
to the subalgebra generated by supercharges and trans-
lations only. In this Letter we only consider LV SUSY
theories that are representations of this algebra without
any further modifications. Moreover we only focus on
the standard chiral and vector superfields, which are con-
ventionally used to describe the field content of the mini-
mal supersymmetric standard model (MSSM). Of course,
the constraints of Lorentz and rotational invariance cannot
be enforced anymore. However, we will see that SUSY still
provides a very powerful selection rule for LV interactions.
Moreover, like in conventional SUSY field theories, we
expect that operators forbidden by SUSY will be sup-
pressed by some power of msoft=M below the soft SUSY
breaking scale msoft, leading to a possible partial explana-
tion of why the LVoperators of dimension three are so tiny.

In this Letter we classify LV operators that are compat-
ible with exact SUSY for arbitrary vector and tensor back-
grounds. To this end, we describe a systematic method of
constructing LV interactions in the SUSY context. We find
that SUSY combined with gauge invariance severely con-
straints the possible form of such operators. From this
analysis we conclude that the smallest dimension of LV
operators within the framework of the MSSM is five. We
show that these SUSY LV operators do not lead to signifi-
cant modifications of dispersion relations.

Supersymmetric LV Lagrangians.—As stated earlier, LV
preserves the subalgebra generated by supercharges and
translations, thereby allowing the use of the superspace
technique. Even though this is equivalent to a component
approach, the superspace language permits the most
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straightforward and economical formulation of LV opera-
tors. To fix the notations we follow the textbook by Wess
and Bagger [9]. The matter and gauge fields in the MSSM
are described by chiral multiplets and vector multiplets. To
facilitate the counting the dimensions of LVoperators from
their superfield expressions, we list the mass dimensions of
objects appearing in this Letter in Table I. Here S denotes a
chiral superfield, i.e., �D _�S � 0, and �D _� is a super cova-
riant derivative. The superfield strength W� �

� 1
4
�D2�e�VD�eV� is obtained from the vector superfield

V. With the use of Table I, it follows that the standard
Lagrangian for the Wess-Zumino model,

LWZ �
Z
d2�P�S� � H:c:�

Z
d4� �SS; (2)

with a (cubic) superpotential P�S� has mass dimension
four. Throughout this Letter we include the superspace
measures in the counting of the dimension of operators.

We construct SUSY LVoperators coupled to background
tensors that lead to modifications of physical observables,
like a preferred direction or Lorentz frame. Our main result
states that any LVoperator respecting MSSM gauge invari-
ance and exact SUSY has dimension five or higher and
therefore is suppressed by at least one power of an ultra-
violet scale M.

We show this in three steps: First we classify LV opera-
tors for chiral superfields, next we investigate consequen-
ces of gauge invariance, and finally we apply our results to
the MSSM. The fundamental chiral and vector multiplets,
S and V, do not carry any Lorentz indices. As only the
derivatives D�, �D _�, and @m are SUSY preserving, SUSY
LV interactions should be constructed by applying a num-
ber of these derivatives to superfields S and V.
Consequently, any SUSY LV interaction contains two or
more superfields, otherwise it is a total derivative in super-
space. This rules out a LV generalization of the Fayet-
Iliopoulos term

R
d4�V. The absence of external fermionic

backgrounds implies that all SUSY LVoperators contain an
even number of fermionic derivatives D� and �D _�.
Combining these observations imply that SUSY LV starts
at dimension four. In particular, we find that possible LV
operators for chiral superfields (labeled by a; b; c) up to
dimension five are obtained as chiral integrals (

R
d2�) of

the superpotential terms

Sa@mSb; Sa@m@nSb; SaSb@mSc; (3)

and as full superspace integral (
R
d4�) of

�S a@mSb; (4)
TABLE I. Dimension of superspace objects.

obect @m �� D�
R
d2�

R
d4� S V W�

dim. 1 � 1
2

1
2 1 2 1 0 3

2
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up to total derivatives in superspace. Of all these operators
only the first term in (3) has dimension four; all others have
dimension five.

Next we proceed to LV in SUSY gauge theories. As D�
and @m break super gauge transformations S! e��S and
eV ! e ��eVe�, we introduce covariant derivatives D�S �
e�VD��eVS� and

@mS!DmS��
i
4
��m _��D _��S��

i
4
��m _�� �D _�D�S: (5)

Contrary to @m, this covariant derivative does not respect
chirality: �D _�D _��S � 2� _� _�W�S � 0; and hence LV
superpotentials (3) cannot be generalized to charged chiral
superfields! Consequently, the only dimension five SUSY
LV operator for a charged chiral multiplet is the gauge
invariant version of the Kähler LV term (4):

�SeVDmS: (6)

The constraints of gauge invariance for vector multiplets
are similar to standard Lorentz preserving theories, hence
possible LV terms in the SUSY gauge sector are the full
superspace integral of

t r �W _�eVW�e�V (7)

of dimension five and chiral integrals of

t rW��W0
��; trSW��W0

��; trW�@mW0
�; (8)

where the first expression has dimension four, while the
other two have dimension five. The chiral superfield S is in
an adjoint representation if V is non-Abelian, and a gauge
singlet for Abelian V. Where needed, we have preformed
symmetrization of � and �, denoted by ��;��, to project
on LV antisymmetric tensor background, bmn��mn����

(which may appear in noncommutative field theories, for
example). For a single U�1� or for non-Abelian gauge
multiplets the first term of (8) vanishes.

Now we apply these results to the MSSM: Since all
MSSM chiral superfields are charged under gauge symme-
tries, no LV superpotential is allowed. In particular, a LV
generalization of the � term in the Higgs sector, H1@mH2,
is excluded by gauge invariance. Since MSSM contains
only one U�1� vector multiplet, operator trW��W

0
�� van-

ishes. Therefore all dimension four SUSY LV operators in
the MSSM are excluded, and the LV terms start from
dimension five. Moreover, not only are dimension four
LV operators forbidden in the MSSM, but also the number
of dimension five operators is limited: The only three types
of operators are Kähler terms (6) for MSSM chiral multip-
lets, interactions based on (7) and the third term in (1) for
the MSSM vector multiplets.

Finally, we stress that in any SUSY theory LV is allowed
only at dimension four and higher. If the spectrum of
MSSM at the electroweak scale or below is extended by
chiral singlets such as right-handed neutrinos, and/or by
1-2
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additional U�1� vector multiplet(s), dimension four LV
operators from [(3) and (8)] can indeed appear.

Phenomenological consequences.—As shown above
there exists only three possible types of dimension five
LV operators that preserve SUSY in the MSSM. We inves-
tigate phenomenological consequences of these operators
and, in particular, we claim that the dimension five SUSY
LV operators do not lead to significant modifications of
dispersion relations.

The physical reason for this result can be understood
from the modification of the kinetic term (6) for the scalar
component z of a chiral superfield S. This modification
M�1 �z@m@2z can be reduced on the equations of motion to
M�1m2 �z@mz. The resulting �M�1m2E correction of the
dispersion relation is small with respect to m2.

These arguments can be lifted to superspace. For sim-
plicity, we focus on LV in the super quantum electrody-
namics (SQED) part of the MSSM, as the extension to the
full MSSM is straightforward. The theory of SQED con-
sists of a U�1� vector multiplet V and two oppositely
charged chiral superfields E	. The complete SQED
Lagrangian with all dimension five SUSY LV terms is
given by

Z
d2�

�
1

16e2
W2 �mE�E�

�
� H:c:�

Z
d4� �E	e

	VE	

�
1

M

Z
d4�

�
iNm	 �E	e	VDmE	 �

1

2
Nm �W ��mW

�

�
1

M

Z
d2�CpmnW�mn@pW � H:c:; (9)

with e the electric charge and m the mass of the electron.
The first line gives the standard Lagrangian for SQED,
while the other two lines describe SUSY LV by external
vectors Nm	 and Nm, and a tensor Cpmn � �Cpnm.

To show that the dispersion relation of the electron/
positron is not significantly modified, we compute the
superfield equations of motion,

@2E	 �m2�1�
i
M

�Nm	 � Nm
�@m�E	 � 0; (10)

up to first order in the LV and dropping all dependence on
the vector superfield V. The resulting corrections to the
dispersion relation,

E2 � p2 �m2 �m2�N0
	 � N0


�
E
M

� . . . ; (11)

are drastically smaller than the conjectured form (1), and
in fact, much smaller than m2 as long as E� M! Fur-
ther corrections with higher powers of E are suppressed
by additional factors of m=M. The same holds for
higher dimensional SUSY LV operators, like
�E	e	VDmDn . . .E	. An even stronger conclusion can

be reached for the photon LVoperators in (9). The equation
of motion in the presence of Nm,
08160
�
1� Nm �� _��

m
�D _�D�

�
D� �D2D�V � 0: (12)

can be solved iteratively to first order in LV parameter. The
zeroth order equation of motion can be applied in the
second term of Eq. (12) after which it vanishes, leaving
no modifications of photon propagation by Nm! Using a
similar approach, we can extend this result to the
Cpmn-proportional operator in (9).

To understand some other phenomenological conse-
quences of SUSY LV, we present the component form of
the Nm-proportional operator of (9):

�
Nm

2M

Z
d4� �W ��mW �

Np

M

�
1

2
~Fkp@lF

kl �D@kFkp

� $pk%�
k�%� %�m@m@p%;

�
;

(13)

where Fmn is the electromagnetic field strength, % is the
photino, andD is the auxilary field. The spatial component
of Nm couples to the cross product of the electric field and
the electric current, �E� J� 
N upon the replacement of
@lF

kl by the current Jk in (13). Under descrete symmetries
this interaction is CPT odd, P even, C and T odd. The
average of E� J inside a particle with charged constitu-
ents, i.e., a nucleon or a nucleus, is a vector directed along a
nuclear spin I. Following the method of [4], we estimate
the size of an effective interaction between N and I to be at
the level of Heff � �10�5 � 10�3�M�1�1 GeV�2�N 
 I�,
where 1 GeV enters as a characteristic hadronic energy
scale. This is precisely the correlation searched for by the
clock comparison experiments (see, e.g., [10], and refer-
ences therein) and NM�1 is limited typically at the level
better than 10�5M�1

Pl .
Lorentz violating SUSY breaking.—LV operators con-

structed above respect SUSY manifestly. Here we present a
method to obtain LV Lagrangians that generically lead to
SUSY breaking. Consider the Lagrangian

Z
d4� ~V�; with ~V � �nm��m ��: (14)

for an arbitrary (real composite) superfield �. According
to Table I the superspace variables �� _� and �� in ~V effec-
tively reduce the dimension of the operator by one. For
example, by taking � � �SS we obtain LV operators of
dimension three. This construction does not preserve
SUSY in general: Only if

Z
d4x �D2D��j � 0; (15)

the operator (14) respects SUSY. (Here j indicates that ��
and �� _� are set to zero after all superspace differentiations.)

This result can be used to show that LV by a Chern-
Simons term, i.e., nm�mnklAn@kAl, does not have a SUSY
extension. Using (14) we obtain a Lagrangian that contains
1-3
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the Chern-Simons interaction

M
Z
d4� ~V� �

nm
4
M
�
�mnklAn@kA

0

l � %�m �%0
�
; (16)

where � � � 1
4 �D

�VW0
� � �D _�V �W0 _� � VD�W0

�� is the
Chern-Simons superfield [11]. (The construction works
also for a single vector multiplet V 0 � V, and (16) is super
gauge invariant because �D2D� ~V � 0.) But the condition
(15) implies that the Lagrangian (16) does not respect
SUSY, since �D2D��j � D��W�W0

��j does not vanish.
Our conclusion supports the recent result of Ref. [12]
that Chern-Simons interactions require SUSY breaking.
Moreover, by taking V 0 � @m@nV in (16), we conclude
that the only dimension five operator that leads to E3

modification of the photon dispersion relation [4],
Fmp@n ~F

kp breaks SUSY explicitly!
Discussion and conclusion.—Before summarizing our

main findings we comment on some recent publications
[13,14] that considered the construction of dimension three
and four SUSY LV interactions for a (neutral) chiral super-
field, which seems to be in conflict with the main results of
this Letter. As the authors observe themselves, the dimen-
sion three operators can be removed by suitable (super)-
field redefinitions [13], leaving no observable effects. But
they claim that the modification of the Wess-Zumino ac-
tion by a symmetric tensor kmn combined with modified
superalgebra and SUSY transformations give rise to viable
LV effects. However, their resulting dimension four LV
Lagrangian (given in [13]) can be removed by the linear
change of coordinates, x0m � xm � knmxn, which also brings
SUSY transformations to a usual Lorentz-conserving form.

We have presented a method of obtaining manifestly
supersymmetric LV interactions by allowing free space-
time or an even number of super covariant derivatives to
act on superfield expressions. We proved that exact SUSY
requires LV to start at dimension four or higher. Gauge
invariance and chirality prohibits derivatives on charged
chiral superfields to appear in the superpotential. Therefore
LV in the charged chiral multiplet sector begins at dimen-
sion five since extra derivatives are allowed only in kinetic
terms. Applying our results to the superfield content of the
MSSM we arrive at our central conclusion: All possible LV
operators in MSSM have at least dimension five and there-
fore are suppressed by one or more powers of a large
ultraviolet scale responsible for LV. Dimension five
SUSY LV interactions for SQED are given in (9) with
obvious generalization to full MSSM.

None of the SUSY LVoperators lead to significant high-
energy modifications of the dispersion relations. We find
that SUSY LVoperators can be reduced on the equations of
motion, producing an additional suppression by m2 and
suggesting a generic form of the SUSY LV dispersion
relation:
08160
E2 � p2 �m2

�
1� b1

E
M

� b2
E2

M2 � . . .
�
; (17)

which is in sharp contrast with (1), and does not modify
propagation of photons. Therefore, SUSY LV leaves no
imprint on the propagation of high-energy particles and
escapes constraints from astrophysical searches of LV, but
can be probed with precision measurements at low
energies.

As exact SUSY forbids dimension three LVoperators the
problem of dimensional transmutation of dimension five
LV operators to dimension three with quadratically diver-
gent loop coefficients is solved. In a more realistic theory
SUSY needs to be broken, and dimension three operators
may be generated but the quadratic loop divergencies are
stabilized at the soft breaking scale. Details of SUSY LV
phenomenology with inclusion of soft SUSY breaking and
loop corrections will be investigated elsewhere [15].
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