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Nonergodicity of Blinking Nanocrystals and Other Lévy-Walk Processes
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We investigate the nonergodic properties of blinking nanocrystals modeled by a Lévy-walk stochastic
process. Using a nonergodic mean field approach we calculate the distribution functions of the time
averaged intensity correlation function. We show that these distributions are not delta peaked on the
ensemble average correlation function values; instead they are W or U shaped. Beyond blinking nano-
crystals our results describe ergodicity breaking in systems modeled by Lévy walks, for example, certain
types of chaotic maps and spin dynamics to name a few.
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Time series of many systems exhibit intermittency,
where at random times the system will switch from state
on (or up) to state off (or down) and vice versa. Examples
include currents in ion channels [1], flows in chaotic maps
[2], and dynamics of spin models [3], e.g., in spin glasses
[4]. These diverse systems may display Lévy statistics [5],
where sojourn times of one of the states or both are
described by power law distributions. Recently, intermit-
tency was found also for blinking nanocrystals (NCs) [6–
10] where the system jumps between an on fluorescent
state and an off state. One method to characterize such
time series uses time average (TA) correlation functions,
e.g., of the fluorescence intensity for the blinking NCs.
Interestingly, the experiments of [6,7] show that the time
average correlation functions exhibit a nonergodic behav-
ior (see details below). What are the nonergodic properties
of the correlation functions and how should they be char-
acterized are open questions that we address in this Letter.
To be specific, we will consider the phenomenology of
blinking nanocrystals; however, with minor modifications
our work can apply to other systems.

Consider a fluorescent intensity trajectory I�t�, recorded
in a time interval �0; T0�. A standard method of analyzing
blinking intensity signals is to define a threshold Ith and
define two states: on if I�t�> Ith and off otherwise. For
capped NCs [e.g., CdSe(ZnS) core-shell NC], on and off
times exhibit power law statistics [9,10], their probability
density function (PDF) behaves like  ��� / ���1��� for
large �, and � < 1. For example, in [7] 215 NCs were
measured and the exponents �on � 0:58� 0:17 and �off �
0:48� 0:15 were found (note that within error of measure-
ment �on � �off � �	 1=2); further, all NCs are reported
to be statistically identical. Since � < 1 the average on and
off times are infinite. The divergence of occupation times
naturally leads to nonergodicity in the blinking NCs [6,7]
(see also [11] for a related discussion) and also to interest-
ing aging effects [7,12,13]. Other measurements classify
the intermittency based on the time average correlation
function or the closely related power spectrum [6,14,15].
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From a single realization I�t� we may construct the time
averaged correlation function [16,17]

CTA�t0; T0� �

R
T
0 I�t� t0�I�t�dt

T
; (1)

where we denoted T � T0 � t0. We use a simple two state
stochastic model which exhibits nontrivial behaviors. The
intensity I�t� jumps between two states I�t� � 1 and I�t� �
0. At the start of the measurement t � 0 the NC begins in
state on I�0� � 1. The process is characterized based on the
sequence f�on1 ; �

off
2 ; �on3 ; �

off
4 ; . . .g of on and off sojourn

times or equivalently according to the dots on the time
axis t1; t2; . . . , on which transitions from on to off or
vice versa occur. The times �i are mutually independent
and are drawn at random from the PDF  ���. We use
 ��� / ���1��� for large �, where 0< �< 1. Such power
law distributions may be viewed as generated by fractional
Poisson process [18]. Note that our model describes a Lévy
walk, which is an important stochastic model for anoma-
lous diffusion [5,12,19]. Simple physical models for  ���
are discussed in [10,12,14]; the exponent � � 1=2 can be
explained based on a first passage time model of a three
dimensional diffusion of charge carriers [12].

In Fig. 1, ten typical simulated correlation functions are
plotted, the most striking feature of the figure is that the
correlation functions are random (note that the ‘‘noise’’ in
these simulations is in fact the true behavior and is not due
to numerical problems). These correlation functions are
similar to those obtained in the experiment [6].
Mathematically, the question of nonergodicity may be
formulated in the following way. Since the process I�t� is
random the time average correlation function CTA�t0; T0� is
random. For ergodic processes, and in the long measure-
ment time limit, the distribution of CTA�t

0; T0� is delta
peaked and centered around the ensemble average corre-
lation function. For nonergodic processes the goal is to
obtain the nontrivial limiting distributions of CTA�t0; T0�
which differ from the narrowly peaked delta functions
found for ergodic processes. In what follows we will
1-1  2005 The American Physical Society
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FIG. 2 (color online). The PDF of CTA�t0; T0� for � � 0:3 and
different values of r � t0=T0. The diamonds are numerical simu-
lations and the curves are analytical expression obtained for r �
0, Eq. (8) (solid curve), r � 0:01; 0:1, Eq. (10) (dashed curve),
and r � 0:5; 0:9; 0:99, Eq. (13) (solid curve). In the ergodic
phase the PDF of CTA�t

0; T0� would be peaked around the
ensemble average correlation function, which for r � 0 falls
on 1=2 and for t0 ! 1 is on 1=4 (for any r � 0). We see that any
measurement is highly unlikely to yield the ensemble average
when � � 0:3.
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FIG. 1 (color online). Ten numerically generated realizations
of the correlation function CTA�t

0; T0� versus r � t0=T0 for � �
0:8 and fixed T0. The correlation functions exhibit nonergodic
behavior and are random. For ergodic processes all ten time
averaged correlation functions would follow the same master
curve, namely, the ensemble average correlation function.
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denote PCTA�t0;T0��z� to be the PDF of CTA�t0; T0�, z being its
possible values; 0 � z � 1 due to Eq. (1).

To start our analysis we rewrite the time average corre-
lation function as

CTA�t
0; T0� �

Pn
i odd

Rti
ti�1
I�t� t0�dt

T
; (2)

where we used the initial condition that I�t� � 1 at time
t � 0. Hence, I�t� � 1 in ti�1 < t < ti when i is odd,
otherwise it is zero. The summation in Eq. (2) is over
odd i’s, and tn � T, namely, n� 1 in Eq. (2) is the random
number of transitions in the interval 
0; T�. From Eq. (2) we
see that the time averaged correlation function is a sum of
the random variables

Z ti

ti�1

I�t�I�t� t0�dt�

8><
>:
�i� t0 �I it0 i odd ti� ti�1>t0

I i�i i odd ti� ti�1<t0

0 i even;

(3)

where

I i �

8>><
>>:

R
ti�t

0

ti
I�t�dt

t0 if ti � ti�1 > t0R
ti�t

0

ti�1�t
0 I�t�dt

�i
if ti � ti�1 < t0:

(4)

The I i’s are time averages of the signal I�t� over periods of
length t0 or �i � ti � ti�1. Using Eqs. (2) and (3), we find
an exact expression for the correlation functions in terms of
f�ig and fI ig,

TCTA�t
0; T0� �

Xn
i odd

�i �
Xn
i odd
�i<t0

�1� I i��i � t0
Xn
i odd
�i>t0

�1� I i�:

(5)

The first term on the right-hand side of this equation is T�,
the total time spent in state on in the time interval 
0; T�. In
the remaining two terms we have considered sojourn times
�i larger or smaller than t0 separately.
08060
We now illustrate the rich behaviors of the PDF
PCTA�t0;T0��z� using numerical simulations, and later we
consider the problem analytically. We generate random
realization of the process using  ��� � ���1�� for � > 1
and show two cases: � � 0:3 in Fig. 2 and � � 0:8 in
Fig. 3. In both figures we vary r � t0=T0. The diamonds
are numerical results which agree very well with the theo-
retical curves, without any fitting. First consider the case
r � 0 in Figs. 2 and 3. For � � 0:3 and r � 0 we see from
Fig. 2 that the PDF PCTA�t0;T0��z� has a U shape. This is a
strong nonergodic behavior, since the PDF does not peak
on the ensemble averaged value of the correlation function
which is 1=2 for this case. On the other hand, when � � 0:8
the PDF PCTA�t0;T0��z� has a W shape, a weak nonergodic
behavior. To understand the origin of this type of transition
note that as �! 0 we expect the process to be in an on
state or an off state for the whole duration of the measure-
ment, hence in that case the PDF of the correlation function
will peak on CTA�t0; T0� � 1 and CTA�t0; T0� � 0 (i.e., U
shape behavior). On the other hand, when �! 1 we expect
a more ergodic behavior, since for � > 1 the mean on and
off periods are finite, this manifests itself in a peak of the
distribution function of CTA�t

0; T0� on the ensemble aver-
age value of 1=2 and a W shape PDF emerges. Note that for
� < 1 there is still statistical weight for trajectories which
are on or off for periods which are of the order of the mea-
surement time T0, hence the distribution of CTA�0; T

0� at-
tains its maximum on CTA�0; T0� � 1 and CTA�0; T0� � 0.
For r > 0 we observe in both figures a nonsymmetrical
1-2
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FIG. 3 (color online). Same as Fig. 2. However, now � � 0:8
and Eq. (10) is used for r � 0:5. If compared with the case � �
0:3, the distribution function exhibits a weaker nonergodic be-
havior; namely, for r � 0 the distribution function peaks on the
ensemble average value of 1=2.
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shape of the PDF of the correlation function, which will be
explained later. We stress that the distributions observed on
Figs. 2 and 3 are not a scaling artifact: analogous calcu-
lations in the case of � > 1 lead in the limit T0 ! 1 to
Dirac � functions instead.

We first consider the nonergodic properties of the corre-
lation function for the case t0 � 0. It is useful to define

I 
a;b� �
Z b

a
I�t�dt=�b� a�; (6)

the time average intensity between time a and time b > a.
Using Eq. (5) and for t0 � 0 the time averaged correlation
function is identical to the time average intensity

CTA�0; T� � I 
0;T� �
T�

T
: (7)

The random correlation function CTA�0; T� has a known
asymptotic behavior in the limit T ! 1, found originally
by Lamperti [20] (see also [3]). This PDF is denoted with
08060
limT!1PCTA�0;T��z� � l��z�, and

l��z� �
sin��
�

z��1�1� z���1

z2� � �1� z�2� � 2z��1� z�� cos��
;

(8)

for 0 � z � 1. This function is normalized to 1 for any 0<
� � 1. The transition between the U shape behavior and
the W shape behavior happens at �c � 0:5946 . . . . The
Lamperti PDF is shown in Figs. 2 and 3 for the case
r � 0, together with the numerical results.

We now consider an analytical approach for the case
t0 � T. The behavior of PCTA�t0;T��z� for t0 � 0 is nontrivial
because the I i’s in Eq. (5) depend statistically on the
random variables �i. To treat the problem we use a non-
ergodic mean field approximation. We noticed already that
I i defined in Eq. (4) are short time averages of the inten-
sity; hence, using mean field theory approach we replace
the I i in Eq. (5) with the time average intensity I 
0;T�,
specific for a given realization. Replacing I i with the
ensemble average intensity is not appropriate. Hence
within mean field

TCTA�t0; T0� � I 
0;T�T � �1� I 
0;T���t0N� ����; (9)

where N� is the number of odd (i.e., on) intervals satisfy-
ing �i � t0 and i � n, while �� �

Pn
i odd;�i<t0

�i is the sum
of all odd �i < t0 and i � n.

We now investigate the distribution of CTA�t0; T0� using
the approximation Eq. (9), leaving certain details of our
derivation to a longer publication. First we replace N� with
its scaling form. Let P�� > t0� �

R
1
t0  ���d� be the proba-

bility of � being larger than t0, we have N� ’ KP�� >
t0�T�=

R
T�

0 � ���d�; where K is a constant of order 1, and
T�=

R
T�

0 � ���d� is the total number of jumps in time
interval T�. A more refined treatment yields N� ’ sin��

�� �


�T
�

t0 �
� � 1�, which is valid for T�=t0 > 1. Similar scaling

arguments are used for �� in Eq. (9), which lead to �� ’
�T����t0�1��, an approximation which is valid for t0 < T�.
For t0 > T�, N� � 0 and �� � T�. In summary and after
some rearrangements, we obtain
CTA�t
0; T0� ’

8<
:
I 
0;T�f1� �1� I 
0;T��
�

r
�1�r�I 
0;T�

�1���sin���� � 1� � sin��
��

r
�1�r�I 
0;T�

�g t0 < T�

I2

0;T� t0 > T�:

(10)
Equation (10) yields the correlation function. However,
unlike standard ergodic theories, the correlation function
here is a random function since it depends on I 
0;T�. The
distribution of CTA�t0; T0� is now easy to find using the
chain rule and Eqs. (7), (8), and (10). In Figs. 2 and 3, we
plot the PDF of CTA�t

0; T0� (dashed curves) together with
numerical simulations (diamonds) and find excellent
agreement between theory and simulation, for the cases
where our approximations are expected to hold r < 1=2.
We observe that, unlike the r � 0 case, the PDF of the
correlation function exhibits a nonsymmetrical shape. To
understand this note that trajectories with short but finite
total time in state on (T� � T) will have finite correlation
functions when t0 � 0. However, when t0 is increased the
corresponding correlation functions will typically decay
very fast to zero. On the other hand, correlation functions
of trajectories with T� 	 T do not change much when t0 is
increased (as long as t0 � T�). This leads to the gradual
nonuniform shift to the left, and ‘‘absorption’’ into
CTA�t0; T0� � 0, of the Lamperti distribution shape, and
hence to a nonsymmetrical shape of the PDFs of the
correlation function whenever r � 0.
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We now turn to the case T � t0. Since t0 is large we use a
decoupling approximation and write Eq. (1) as

CTA�t
0; T0� ’ I 
0;T�I 
t0;T0�: (11)

We distinguish between two types of trajectories: those in
which no transition event occurs in the time interval 
T; T0�
and all other trajectories. Let P0�a; b� be the probability of
making no transition between time a and time b, also
called the persistence probability [3],

P0�a; b� 	
sin��
�

Z a=b

0
x��1�1� x���dx (12)

in the scaling limit. Using the Lamperti distribution for
I 
0;T�, and probabilistic arguments with details left to a
future publication, we find the PDF of CTA�t

0; T0�,

PCTA�t0;T0��z� ’ 
1� P0�T; T0��f
1� P0�t0; T0��

�
Z 1

z

l��x�
x

dx�
P0�t0; T0�

2

l��z� � ��z��g

� P0�T; T0�

	
zl��z� �

��z�
2



: (13)

Note that to derive Eq. (13) we used the fact that I 
0;T� and
I 
t0;T0� are correlated. In Figs. 2 and 3 we plot these PDFs of
CTA�t

0; T0� (solid curves) together with numerical simula-
tions (diamonds) and find good agreement between theory
and simulation, for the cases where these approximations
are expected to hold, r > 1=2. In the limit t0=T0 ! 1,
Eq. (13) simplifies to

PCTA�t0;T0��z� 	 
‘��z� � ��z��=2; (14)

a result which is easily understood if one realizes that in
this limit I 
t0;T0� in Eq. (11) is either 0 or 1 with probabil-
ities 1=2, and that the PDF of I 
0;T� is Lamperti’s PDF
Eq. (8).

Equations (10) and (13) are the main analytical results of
the Letter since they give approximate PDFs of the non-
ergodic intensity correlation functions for a large range of
parameters. We note that the considered nonergodic pro-
cess cannot be decomposed into ergodic components.
Ergodic decomposition means that depending on a priori
unknown (or randomly selected) initial condition the ran-
dom process will follow one of many possible nonmixing
branches, each of which is assumed ergodic, but with
different properties [21,22]. Such a decomposable non-
ergodicity may be the case, e.g., for neuronal spike trains
[23] and gene expression time series [24], where different
neurons or subjects are not necessarily statistically equiva-
lent. In our case, the process is asymptotically insensitive
to the initial conditions and clearly mixing. However, the
mixing is so slow (its characteristic time diverges) that the
time (or sample) average of any realization fluctuates and
does not converge.

Finally, we quantified the nonergodicity induced by
Lévy walks. The cause of this nonergodicity is the diver-
08060
gence of the mean sojourn time. More generally, time
average correlation functions and related power spectra
of scale-free time series should be treated with care, and
the ergodic hypothesis should not be taken for granted even
in seemingly simple processes [25].
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