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The validity of substituting a c-number z for the k � 0 mode operator a0 is established rigorously in
full generality, thereby verifying one aspect of Bogoliubov’s 1947 theory. This substitution not only yields
the correct value of thermodynamic quantities such as the pressure or ground state energy, but also the
value of jzj2 that maximizes the partition function equals the true amount of condensation in the presence
of a gauge-symmetry-breaking term. This point had previously been elusive.
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One of the key developments in the theory of the Bose
gas, especially the theory of the low density gases currently
at the forefront of experiment, is Bogoliubov’s 1947 analy-
sis [1] of the many-body Hamiltonian by means of a
c-number substitution for the most relevant operators in
the problem, the zero-momentum mode operators, namely
a0 ! z; a�0 ! z�. Naturally, the appropriate value of z has
to be determined by some sort of consistency or variational
principle, which might be complicated, but the concern,
expressed by many authors over the years, is whether this
sort of substitution is legitimate, i.e., error-free. We address
this latter problem here and show, by a simple but rigorous
analysis, that it is so under very general circumstances.

The rigorous justification for this substitution, as far as
calculating the pressure is concerned, was done in a classic
paper of Ginibre [2] in 1968, but it does not seem to have
percolated into the general theory community. In textbooks
it is often said, for instance, that it is tied to the imputed
‘‘fact’’ that the expectation value of the number operator
n0 � a�0a0 is of order V � volume. (This was the argument
in [1].) That is, Bose-Einstein condensation (BEC) justifies
the substitution. As Ginibre pointed out, however, BEC has
nothing to do with it. The z substitution still gives the right
answer even if n0 is small (but it is a useful calculational
tool only if n0 is macroscopic). Thus, despite [2] and the
thorough review of these matters in [3], there is some
confusion in the literature and clarification could be useful.

In this Letter we do three things. (i) We show how
Ginibre’s result can be easily obtained in a few simple
lines. While he used coherent states, he did not use the
Berezin-Lieb inequality [4–6], derived later, which effi-
ciently gives upper bounds. This inequality gives explicit
error bounds which, typically, are only order 1 compared to
the total free energy or pressure times volume, which are
order N � particle number.

(ii) This allows us to go beyond [2] and make c-number
substitutions for many k modes at once, provided the
number of modes is lower order than N.
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(iii) We show how the optimum value of z yields, in fact,
the expectation value hn0i in the true state when a gauge
breaking term is added to the Hamiltonian [7]. More
precisely, in the thermodynamic limit (TL) the jzj2 that
maximizes the partition function equals jha0ij2 and this
equals hn0i, which is the amount of condensation—a point
that was not addressed in full generality in previous work
[2,3,8]. The second of these equalities has previously been
treated only under some additional assumptions [9] or for
some simplified models [3,10].

While we work here at positive temperature kBT � 1=�,
our methods also work for the ground state (and are even
simpler in that case). To keep this Letter short and, hope-
fully, readable, we are a bit sketchy in places, but there is
no difficulty filling in the details.

The use of coherent states [11,12] to give accurate upper
and lower bounds to energies, and thence to expectation
values, is effective in a wide variety of problems [13], e.g.,
quantum spin systems in the large S limit [5], the Dicke
model [14], the strong coupling polaron [15], and the proof
that Thomas-Fermi theory is exact in the large atom limit
[16,17]. For concreteness and relevance, we concentrate on
the Bose gas problem here, and we discuss only the total,
correct Hamiltonian. Nevertheless, the same conclusions
hold also for variants, such as Bogoliubov’s truncated
Hamiltonian (the ‘‘weakly imperfect Bose gas’’ [1,3]) or
other modifications, provided we are in the stability regime
(i.e., the regime in which the models make sense). We are
not claiming that any particular approximation is valid.
That is a completely different story that has to be decided
independently. The method can also be modified to incor-
porate inhomogeneous systems. The message is the same
in all cases, namely, that the z substitution causes no errors
(in the TL), even if there is no BEC, whenever it is applied
to physically stable systems. Conversely, if the system is
stable after the z substitution, then so is the original one.

We start with the well-known Hamiltonian for bosons in
a large box of volume V, expressed in terms of the second-
quantized creation and annihilation operators ak; a�k sat-
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isfying the canonical commutation relations,

H �
X
k

k2a�kak �
1

2V

X
k;p;q

��p	a�k�pa
�
q
pakaq; (1)

(with �h � 2m � 1). Here, � is the Fourier transform of the
two-body potential v�r	. We assume that there is a bound
on the Fourier coefficients j��k	j � ’<1.

The case of hard core potentials can be taken care of in
the following way. First cut off the hard core potential v at
a height 1012 eV. It is easy to prove, by standard methods,
that this cutoff will have a negligible effect on the exact
answer. After the cutoff ’ will be about 1012 eV �A3, and
according to what we prove below, this substitution will
affect the chemical potential only by about ’=V, which is
truly negligible when V � 1023 �A3.

If we replace the operator a0 by a complex number z and
a�0 by z� everywhere in H we obtain a Hamiltonian H0�z	
that acts on the Fock space of all the modes other than the
a0 mode. Unfortunately, H0�z	 does not commute with the
particle number N> �

P
k�0a

�
kak. It is convenient, there-

fore, to work in the grand canonical ensemble and consider
H� � H 
�N � H
��a�0a0 � N>	 and, correspond-
ingly, H0

��z	 � H0�z	 
��jzj2 � N>	.
The partition functions are given by

e�Vp��	 � ���	 � TrH exp�
�H��; (2)

e�Vp
0��	 � �0��	 �

Z
d2zTrH 0 exp�
�H0

��z	�; (3)

where H is the full Hilbert (Fock) space, H 0 is the Fock
space without the a0 mode, and d2z � �
1dxdy with z �
x� iy. The functions p��	 and p0��	 are the correspond-
ing finite volume pressures.

The pressure p��	 has a finite TL for all �<�critical,
and it is a convex function of�. For the noninteracting gas,
�critical � 0, but for any realistic system �critical � �1. In
any case, we assume �<�critical, in which case both the
pressure and the density are finite.

Let jzi � expf
jzj2=2� za�0gj0i be the coherent state
vector in the a0 Fock space and let ��z	 � jzihzj be the
projector onto this vector. There are six relevant operators
containing a0 in H�, which have the following expectation
values [11] (called lower symbols):

hzja0jzi� z; hzja0a0jzi� z2; hzja�0a0jzi� jzj2;

hzja�0jzi� z�; hzja�0a
�
0jzi� z�2; hzja�0a

�
0a0a0jzi� jzj4:

Each also has an upper symbol, which is a function of z
[call it u�z	 generically] such that an operator F is repre-
sented as F �

R
d2zu�z	��z	. These symbols are

a0 ! z; a0a0 ! z2; a�0a0 ! jzj2 
 1; a�0 ! z�;

a�0a
�
0 ! z�2; a�0a

�
0a0a0 ! jzj4 
 4jzj2 � 2:

It will be noted that the operatorH0
��z	, defined above, is

obtained fromH� by substituting the lower symbols for the
08040
six operators. If we substitute the upper symbols instead
into H� we obtain a slightly different operator, which we
write as H00

��z	 � H0
��z	 �  ��z	 with

 ��z	 � ��
1

2V

�
�
4jzj2 � 2	��0	 


X
k�0

a�kak�2��0	

� ��k	 � ��
k	�
�
: (4)

The next step is to mention two inequalities, of which
the first is

���	 � �0��	: (5)

This is a consequence of the following two facts: the
completeness property of coherent states,

R
d2z��z	 �

Identity, and

hz �!je
�H� jz �!i � e
�hz�!jH�jz�!i � e
�h!jH
0
��z	j!i;

(6)

where ! is any normalized vector in H 0. This is Jensen’s
inequality for the expectation value of a convex function
(such as the exponential function) of an operator.

To prove (5) we take ! in (6) to be one of the normalized
eigenvectors of H0

��z	, in which case expfh!j 

�H0

��z	j!ig � h!j expf
�H0
��z	gj!i. We then sum over

all such eigenvectors (for a fixed z) and integrate over z.
The left side is then ���	, while the right side is �0��	.

The second inequality [4–6] is

���	 � �00��	 � e�Vp
00��	; (7)

where �00��	 is similar to �0��	 except that H0
��z	 is

replaced by H00
��z	. Its proof is the following. Let j�ji 2

H denote the complete set of normalized eigenfunctions
of H�. The partial inner product j�j�z	i � hzj�ji is a
vector in H 0 whose square norm h�j�z	j�j�z	iH 0 �

cj�z	 satisfies
R
d2zcj�z	 � 1. By using the upper symbols,

we can write h�jjH�j�ji �
R
d2zh�j�z	jH

00
��z	j�j�z	i �R

d2zh�0
j�z	jH

00
��z	j�0

j�z	icj�z	, where j�0
j�z	i is the nor-

malized vector cj�z	
1=2�j�z	. To compute the trace, we
can exponentiate this to write ���	 as

X
j

exp
�

�

Z
d2zcj�z	h�0

j�z	jH
00
��z	j�0

j�z	i
�
:

Using Jensen’s inequality twice, once for functions and
once for expectations as in (6), ���	 is less thanX

j

Z
d2zcj�z	 expfh�

0
j�z	j 
 �H00

��z	j�
0
j�z	ig

�
X
j

Z
d2zcj�z	h�0

j�z	j expf
�H
00
��z	gj�0

j�z	i:

Since Tr��z	 � 1, the last expression can be rewrittenZ
d2z

X
j

h�jj��z	 � expf
�H00
��z	gj�ji � �00��	:
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Thus, we have that

�0��	 � ���	 � �00��	: (8)

The next step is to try to relate �00��	 to �0��	. To this end
we have to bound  ��z	 in (4). This is easily done in terms
of the total number operator whose lower symbol is
N0�z	� jzj2�

P
k�0a

�
kak. In terms of the bound ’ on ��p	

j ��z	j � 2’�N0�z	 � 1
2�=V � j�j: (9)

Consequently, �00��	 and �0��	 are related by the inequal-
ity

�00��	 � �0��� 2’=V	e��j�j�’=V	: (10)

Equality of the pressures p��	, p0��	, and p00��	 in the TL
follows from (8) and (10).

Closely related to this point is the question of relating
���	 to the maximum value of the integrand in (3), which
is maxz TrH 0 exp�
�H0

��z	� � e�Vp
max

. This latter quan-
tity is often used in discussions of the z substitution prob-
lem, e.g., in Refs. [2,3]. One direction is not hard. It is the
inequality (used in Ref. [2])

���	 � max
z

TrH 0 exp�
�H0
��z	�; (11)

and the proof is the same as the proof of (5), except that this
time we replace the completeness relation for the coherent
states by the simple inequality ��z	 � Identity for any
fixed number z.

For the other direction, split the integral defining �00��	
into a part where jzj2 < # and jzj2 � #. Thus,

�00��	 � #max
z

TrH 0 exp�
�H00
��z	�

�
1

#

Z
jzj2�#

d2zjzj2 TrH 0 exp�
�H00
��z	�: (12)

Dropping the condition jzj2 � # in the last integral and
using jzj2 � N0�z	 � N00�z	 � 1, we see that the second
line in (12) is bounded above by #
1�00��	�V$00��	 � 1�,
where $00��	 denotes the density in the H00

� ensemble.
Optimizing over # leads to

�00��	 � 2�V$00��	� 1�max
z

TrH 0 exp�
�H00
��z	�: (13)

Note that $00��	 is order 1, since p00��	 and p��	 agree in
the TL (and are convex in �), and we assumed that the
density in the original ensemble is finite. By (9), H00

� �

H0
��2’=V 
 j�j 
 ’=V, and it follows from (7), (13), and

(11) that pmax agrees with the true pressure p in the TL.
Their difference, in fact, is at most O�lnV=V	. This is the
result obtained by Ginibre in [2] by more complicated
arguments, under the assumption of superstability of the
interaction, and without the explicit error estimates ob-
tained here.

To summarize the situation so far, we have four expres-
sions for the grand canonical pressure. They are all equal in
the TL limit, namely,
08040
p��	 � p0��	 � p00��	 � pmax��	 (14)

when � is not a point at which the density can be infinite.
Our second main point is that not only is the z substitu-

tion valid for a0, but it can also be done for many modes
simultaneously. As long as the number of modes treated in
this way is much smaller than N the effect on the pressure
will be negligible. Each such substitution will result in an
error in the chemical potential that is order ’=V. The proof
of this fact just imitates what was done above for one
mode. Translation invariance is not important here; one
can replace any mode such as

P
kgkak by a c-number,

which can be useful for inhomogeneous systems.
A more delicate point is our third one, and it requires,

first, a discussion of the meaning of ‘‘condensate fraction’’
that goes beyond what is usually mentioned in textbooks,
but which was brought out in [1,18,19]. The ‘‘natural’’ idea
would be to consider V
1hn0i. This, however, need not be a
reliable measure of the condensate fraction for the follow-
ing reason. If we expand expf
�Hg in eigenfunctions of
the number operator n0 we would have hn0i �

P
nn'�n	,

where '�n	 is the probability that n0 � n. One would like
to think that '�n	 is sharply peaked at some maximum n
value, but we do not know if this is the case. '�n	 could be
flat, up to the maximum value or, worse, it could have a
maximum at n � 0. Recall that precisely this happens for
the Heisenberg quantum ferromagnet [18]; by virtue of
conservation of total spin angular momentum, the distri-
bution of values of the z component of the total spin, Sz, is
a strictly decreasing function of jSzj. Even if it were flat,
the expected value of Sz would be half of the spontaneous
magnetization that one gets by applying a weak magnetic
field.

With this example in mind, we see that the only physi-
cally reliable quantity is lim(!0 limV!1 V
1hn0i�;(, where
the expectation is now with respect to a Hamiltonian
H�;( � H� �

				
V

p
�(a0 � (�a�0	 [1]. Without loss of gen-

erality, we assume ( to be real. We show that for almost
every (, the density '�V$0	 converges in the TL to a
 -function at the point $̂0 � limV!1jzmaxj

2=V, where
zmax maximizes the partition function
TrH 0 expf
�H0

�;(�z	g. That is,

V
1hn0i�;( � V
1jha0i�;(j
2 � V
1jzmaxj

2 (15)

in the TL. This holds for those ( where the pressure in
the TL is differentiable; since p��; (	 is convex (upwards)
in ( this is true almost everywhere. The right and
left derivatives exist for every ( and hence
lim(!0� limV!1 V
1jha0i�;(j2 exists.

The expectation values hn0i�;( and ha0i�;( are obtained
by integrating �jzj2 
 1	 and z, respectively, with the
weight W�;(�z	 � ���;(	
1 TrH 0 hzj expf
�H�;(gjzi.
We will show that this weight converges to a  -function
at zmax in the TL, implying (15). If we could replace
W�;(�z	 by W�;0�z	e
�(

			
V

p
�z�z�	, this would follow from

Griffiths’s argument [18] (see also Sec. 1 of [20]). Because
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�H; a0� � 0,W�;( is not of this product form. However, the
weight for �00��; (	, which is W00

�;(�z	 �
�00��; (	
1 TrH 0 expf
�H00

�;(�z	g, does have the right
form. In the following we show that the two weights are
equal apart from negligible errors.

Equality (14) holds also for all (; i.e., p��; (	 �
p00��; (	 � pmax��; (	 in the TL. In fact, since the upper
and lower symbols agree for a0 and a�0, the error estimates
above remain unchanged. [Note that since

				
V

p
ja0 � a�0j �

 �N � 1
2	 � V= for any  > 0, p��; (	 is finite for all ( if

it is finite for ( � 0 in a small interval around �.] At any
point of differentiability with respect to (, Griffiths’s theo-
rem [18] (see Cor. 1.1 in Ref. [20]), applied to the partition
function �00�(;�	, implies that W00

�;(�*
				
V

p
	 converges to a

 -function at some point *̂ on the real axis as V ! 1. (The
original Griffiths argument can easily be extended to two
variables, as we have here. Because of radial symmetry, the
derivative of the pressure with respect to Im( is zero at any
nonzero real (.) Moreover, by comparing the derivatives of
p00 and pmax we see that *̂ � limV!1zmax=

				
V

p
, since

zmax=
				
V

p
is contained in the interval between the left and

right derivatives of pmax��;(	 with respect to (.
We now show that the same is true for W�;(. To this end,

we add another term to the Hamiltonian, namely, +F �

+V
R
d2z��z	f�zV
1=2	, with + and f real. If f�*	 is a nice

function of two real variables with bounded second deriva-
tives, it is then easy to see that the upper and lower symbols
of F differ only by a term of order 1. Namely, for some
C> 0 independent of z0 and V,







V

Z
d2zjhzjz0ij

2�f�zV
1=2	 
 f�z0V

1=2	�









� C:

Hence, in particular, p��; (; +	 � p00��;(; +	 in the TL.
Moreover, if f�*	 � 0 for j* 
 *̂j �  , then the pressure is
independent of + for j+j small enough (depending only on
 ). This can be seen as follows. We have

p00��; (; +	 
 p00��; (; 0	 �
1

�V
lnhe
�+Vf�zV


1=2	i; (16)

where the last expectation is in the H00
� ensemble at + � 0.

The corresponding distribution is exponentially localized
at z=

				
V

p
� *̂ [18,20], and therefore the right side of (16)

goes to zero in the TL for small enough +. In particular, the
+ derivative of the TL pressure at + � 0 is zero. By con-
vexity in +, this implies that the derivative of p at finite
volume, given by V
1hFi�;( �

R
d2zf�zV
1=2	W�;(�z	,

goes to zero in the TL. Since f was arbitrary,
V
R
j*
*̂ j� d

2*W�;(�*
				
V

p
	 ! 0 as V ! 1. This holds for

all  > 0 and therefore proves the statement.
Our method also applies to the case when the pressure is

not differentiable in ( (which is the case at ( � 0 in the
presence of BEC). In this case, the resulting weights W�;(
08040
and W00
�;( need not be  -functions, but Griffiths’s method

[18,20] implies that they are, for ( � 0, supported on the
real axis between the right and left derivative of p and, for
( � 0, on a disk (due to the gauge symmetry) with the
radius determined by the right derivative at ( � 0. This,
together with convexity, implies that hn0i( is monotone
increasing in ( in the TL and, in particular,
limV!1V


1hn0i�;(�0 � lim(!0 limV!1 V

1jha0i�;(j

2, a
fact which is intuitively clear but has, to the best of our
knowledge, not been proved so far [19] in this generality.
In fact, the only hypothesis entering our analysis, apart
from the bound ’ on the potential, is the existence of the
TL of the pressure and the density.
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[7] A. Sütő, following Letter, Phys. Rev. Lett. 94, 080402

(2005) contains another proof of item (iii).
[8] E. Buffet, Ph. de Smedt, and J. V. Pulè, J. Phys. A 16, 4307
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