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We investigate the low-energy properties of antiferromagnetic quantum XXZ spin chains with
couplings following two-letter aperiodic sequences, by an adaptation of the Ma-Dasgupta-Hu
renormalization-group method. For a given aperiodic sequence, we argue that, in the easy-plane
anisotropy regime, intermediate between the XX and Heisenberg limits, the general scaling form of the
thermodynamic properties is essentially given by the exactly known XX behavior, providing a classifi-
cation of the effects of aperiodicity on XXZ chains. As representative illustrations, we present analytical
and numerical results for the low-temperature thermodynamics and the ground-state correlations for
couplings following the Fibonacci quasiperiodic structure and a binary Rudin-Shapiro sequence, whose
geometrical fluctuations are similar to those induced by randomness.
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At low temperatures, the interplay between lack of trans-
lational invariance and quantum fluctuations in low-
dimensional strongly correlated electron systems may in-
duce novel phases with peculiar behavior. In particular,
randomness in quantum spin chains may lead, for instance,
to Griffiths phases [1], large-spin formation [2], and
random-singlet phases [3]. On the other hand, studies on
the influence of deterministic but aperiodic elements on
similar systems (see, e.g., [4–9]), inspired by the experi-
mental discovery of quasicrystals, have revealed strong
effects on dynamical and thermodynamic properties, but
far less is known concerning the precise nature of the
underlying ground-state phases.

Prototypical models for those studies are spin-1=2 anti-
ferromagnetic (AFM) XXZ chains described by the
Hamiltonian
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where all Ji > 0 and the Si are spin operators. Random-
bond versions of these systems have been much studied by
a real-space renormalization-group (RG) method intro-
duced [10] by Ma, Dasgupta and Hu (MDH) for the
Heisenberg chain (� � 1) and more recently extended by
Fisher [1,3], who gave evidence that the method becomes
asymptotically exact at low energies. The idea is to deci-
mate the spin pairs coupled by the strongest bonds (those
with the largest gaps between the local ground state and the
first excited multiplet), forming singlets and inducing weak
effective couplings between neighboring spins, thereby
reducing the energy scale. For XXZ chains in the regime
�1=2<� � 1, the method predicts the ground state to be
a random-singlet phase, consisting of arbitrarily distant
spins forming rare, strongly correlated singlet pairs [3].
Here we employ the MDH method to investigate the low-
energy properties of aperiodic chains.

Two-letter aperiodic sequences (AS’s) can be generated
by an inflation rule such as a! ab, b! a, which pro-
duces the Fibonacci sequence abaababa . . . . Associating
05=94(7)=077201(4)$23.00 07720
with each a a coupling Ja and with each b a coupling Jb,
we can build an aperiodic quantum spin chain. In the XX
limit (� � 0), the low-temperature thermodynamic behav-
ior can be qualitatively determined for any AS by an exact
RG method [6]. The effects of aperiodicity depend on
topological properties of the AS. If the fraction of letters
a (or b) at odd positions is different from that at even
positions (i.e., if there is average dimerization), then a
finite gap opens between the global ground state and the
first excited states, and the chain becomes noncritical.
Otherwise, the scaling of the lowest gaps can be classified
according to the wandering exponent ! measuring the
geometric fluctuations g related to nonoverlapping pairs
of letters [6], which vary with the system sizeN as g� N!.
If !< 0, aperiodicity has no effect on the long-distance,
low-temperature properties, and the system behaves as in
the uniform case, with a finite susceptibility at T � 0. If
! � 0, as in the Fibonacci sequence, aperiodicity is mar-
ginal and may lead to nonuniversal power-law scaling
behavior of thermodynamic properties. If !> 0, aperio-
dicity is relevant in the RG sense, affecting the T � 0
critical behavior and leading to exponential scaling of the
lowest gaps (�) at long distances r, of the form ��
exp��r!�. In particular, for sequences with ! � 1=2,
geometric fluctuations mimic those induced by random-
ness, and the scaling behavior is similar to the one char-
acterizing the random-singlet phase [3]. No analogous
results exist for general XXZ chains, although bosonization
and density-matrix RG (DMRG) calculations on the
Heisenberg chain indicate that Fibonacci couplings should
be relevant [7–9]. We argue below that, for a given AS,
low-temperature properties of all chains in the regime 0 �
� � 1 should follow essentially the XX scaling form.
Moreover, we also obtain information on ground-state
correlation functions.

In order to apply the MDH method to aperiodic chains,
we must remember that now there are many spin blocks
with the same gap at a given energy scale. Also, those
blocks may consist of more than two spins, in which case
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FIG. 1. Left end of the Fibonacci XXZ chain. Dashed (solid)
lines represent Ja (Jb) bonds. An effective coupling J0b is induced
between spins separated by only one singlet pair, while J0a
connects spins separated by two singlet pairs. Apart from a
few bonds close to the chain ends, the effective couplings also
form a Fibonacci sequence.
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effective spins would form upon renormalization. The
strategy is to sweep through the lattice until all blocks
with the same gap have been renormalized, leading to
new effective couplings (and possibly spins). Then we
search for the next largest gap, which again corresponds
to many blocks. When all possible original blocks have
been considered, there remain some unrenormalized spins,
possibly along with effective ones, defining new blocks
which form a second generation of the lattice. The process
is then iterated, leading to the renormalization of the spatial
distribution of effective blocks along the generations; for
small enough coupling ratios (which are indeed required
for the MDH method to work), this distribution will be the
same for all 0 � � � 1. Because of the self-similarity
inherent to AS’s generated by inflation rules, the effective
couplings take a finite number of values, and it is natural
that the block distribution reaches a periodic attractor
(usually a fixed point) after a few lattice sweeps. By study-
ing recursion relations for the effective couplings, we can
obtain analytical results. As the RG proceeds, the coupling
ratio usually gets smaller, suggesting that the method
becomes asymptotically exact. This picture holds for mar-
ginal (! � 0) and relevant (!> 0) aperiodicity; for irrele-
vant AS’s, such as the Thue-Morse sequence (a! ab,
b! ba), the coupling ratio approaches unity as the RG
proceeds, and the method eventually breaks down. As
representative examples, we consider the marginal case
of Fibonacci couplings and the relevant case of a binary
Rudin-Shapiro sequence. Full details of the calculations, as
well as application to other AS’s, will be reported else-
where [11].

The blocks to be renormalized consist of n spins con-
nected by equal bonds J0, and coupled to the rest of the
chain by weaker bonds Jl and Jr. The ground state (GS) for
blocks with an even number of spins is a singlet, and at low
energies we can eliminate the whole block, along with Jl
and Jr, leaving an effective AFM bond J0 coupling the two
spins closer to the block and given by second-order per-
turbation theory as J0 � �nJlJr=J0, with �-dependent co-
efficients �n. A block with an odd number of spins has a
doublet as its GS; at low energies, it can be replaced by an
effective spin connected to its nearest neighbors by AFM
effective bonds J0l;r � �nJl;r whose values are calculated
by first-order perturbation theory. In general, the anisot-
ropy parameters are also renormalized and become site
dependent; for n even, the effective anisotropy is �0 �
�n��0��l�r, while for n odd �0

l;r � �n��0��l;r, with
j�n���j< 1 for 0 � �< 1 and �n�1� � 1. Thus, for 0<
�< 1 the �i flow to the XX fixed point (all �i � 0),
ultimately reproducing the corresponding scaling behavior,
while for the Heisenberg chain all �i remain equal to unity.
So, we focus here on the Heisenberg and XX limits, and
postpone examples for intermediate cases to a future pub-
lication [11].

First we apply the method to chains with Fibonacci
couplings. This is the simplest example of the quasiperi-
odic precious-mean sequences with marginal fluctuations
07720
[6]. A few bonds closer to the left end of the original chain,
along with induced effective couplings, are shown in Fig. 1
for Ja < Jb [12]. Only singlets are formed by the RG
process, producing two different effective couplings,

J0a � �2
2J

3
a=J2b and J0b � �2J2a=Jb:

The bare coupling ratio is � � Ja=Jb, its renormalized
value being �0 � �2�. In each generation j, all decimated
blocks have the same size rj and gap �j (proportional to
the effective Jb bonds). The recursion relations for � and �
are given by

�j�1 � �2�j and �j�1 � �2�2
j�j:

The distance between spins forming a singlet in the jth
generation defines a characteristic length rj, corresponding
to the Fibonacci numbers rj � 1; 3; 13; 55; . . . ; for j� 1

the ratio rj�1=rj approaches �3, where� � �1�
���
5

p
�=2 is

the golden mean. So we have rj � r0�
3j, where r0 is a

constant, and by solving the recursion relations we obtain
the dynamic scaling behavior,

�j � r��j e��ln
2�rj=r0�; (2)

with � � �2=3 ln�= ln� and � � � ln�2=9ln
2�. For the

Heisenberg chain �2 � 1=2, and Eq. (2) describes a
weakly exponential scaling, but not of the form ��
exp��r!� found for the XX chain with relevant aperiodic-
ity (!> 0) and used to fit the DMRG data for the
Fibonacci Heisenberg chain [7,8]. For the XX chain �2 �
1, so that � � 0 and we can identify � with a dynamical
critical exponent z, whose value depends on the coupling
ratio, leading to nonuniversal scaling behavior, character-
istic of strictly marginal operators [13]. This nonuniversal-
ity should hold in the anisotropy regime 0<�< 1 with a
‘‘bare’’ value of � defined at a crossover scale. Note that
we can view the Heisenberg scaling form (� � 0) as a
marginally relevant (!! 0�) case.

The susceptibility  �T� can be estimated [3] by assum-
ing that, at energy scale �j � T, only unrenormalized
spins are magnetically active (and essentially free), singlet
pairs being effectively frozen. Thus, if nj � r�1

j is the num-
ber of surviving spins in the jth generation,  �T ��j� �

nj�1=�j: As shown in Fig. 2(a),  �T� estimated for the
Fibonacci XX chain from the MDH method agrees very
well with results from free-fermion [14] numerical diago-
nalization (ND) of finite chains, even for � � 1=4.
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FIG. 2. Behavior of  �T� for aperiodic XX chains, obtained
from the MDH method (symbols) and from numerical diagonal-
ization on chains with 104–105 sites (curves), for two values of
� � Ja=Jb. (a) Fibonacci couplings. The slope of the curves
depends on �, reflecting the marginal character of the aperio-
dicity. (b) Rudin-Shapiro couplings. The inset plots the inverse
square root of T �T� versus T (in log scale) with � � 1=4,
showing that for points corresponding to the smallest gaps in
each generation the random-singlet phase result  �T� � 1=Tln2T
is reproduced (dotted line).

FIG. 3. Left end of the first three generations of the Rudin-
Shapiro chains. Thick lines indicate strong bonds. Shaded blocks
contribute effective spins when renormalized; white blocks form
singlets.
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As all singlets formed at the jth generation have size rj
and the block distribution is fixed, the average GS corre-
lation between spins separated by a distance rj is

C""�rj�hS"i S
"
i�rj

i� 1
2jc0j�nj�nj�1��$jc0jr

�1
j ; (3)

where $ is a constant, " � x; y; z, and c0 is the GS corre-
lation between the two spins in a singlet, given by c0 �
�1=4 for the Heisenberg chain and for both " � x and
" � z in the XX chain. We point out that these should be
the dominant correlations, and spins separated by distances
other than rj are predicted to be only weakly correlated.
This can be checked for the XX chain by calculating GS
correlations via the free-fermion method. Results for
chains with � & 1=4 (see [11]) reveal very good agreement
with Eq. (3). As correlations in the uniform XX chain [14]
decay as Cxx�r� � r�1=2 and Czz�r� � r�2, dominant xx
(zz) correlations in the Fibonacci chain are weaker
(stronger) than in the uniform chain.

Relevant aperiodicity is characterized by strong geomet-
ric fluctuations, and is usually induced by sequences with
blocks having two or more neighboring strong bonds.
Furthermore, after the first lattice sweep, more than two
values of effective couplings may be produced. However,
they all derive from the original pair of couplings Ja and
Jb, so that, in the presence of a periodic attractor, it is
generally possible to write recursion relations for an effec-
tive coupling ratio and gap having the forms [11]

�j�1 � c�kj and �j�1 � &�‘j�j; (4)

where c and & are �-dependent nonuniversal constants,
and ‘ (a rational number) and k (an integer) relate to the
number of singlets involved in determining the effective
07720
couplings. We assume k � 2, k � 1 corresponding to mar-
ginal behavior, as in the Fibonacci case [15]. If a character-
istic length scale takes the form rj � r0(j, with a rescaling
factor (, solving the recursion relations leads to a dynamic
scaling described by

�j � r��j exp���r!j � � exp���r!j �; (5)

with � and � nonuniversal constants and ! � lnk= ln(.
Note that ! has precisely the same form as the exact result
[6] obtained for the XX chain with aperiodic couplings not
inducing average dimerization. Moreover, ! depends only
on the topology of the sequence and on its self-similar
properties, but not on the anisotropy; so, for a given AS, the
scaling form in Eq. (5) should be valid for any XXZ chain
in the regime 0 � � � 1, with the same exponent !.

As an example, we consider couplings following the
binary Rudin-Shapiro (RS) sequence, whose inflation
rule for letter pairs is aa! aaab, ab! aaba, ba!
bbab and bb! bbba. This generates blocks having be-
tween two and five spins. Figure 3 shows a few bonds
closer to the left end of the chain for the first three gen-
erations of the lattice. Blocks with more than three spins
are eliminated in the first sweep and do not appear in later
generations. Both two- and three-spin blocks are present in
the fixed-point block distribution (already reached at the
second generation), and a hierarchy of effective spins is
produced, as depicted in Fig. 3. At the jth generation,
three-spin blocks have size rj�2�4j�1 (so that ( � 4),
while two-spin blocks have size rj=2. The first lattice
sweep generates effective couplings ~Ji having eight differ-
ent values, but three of them are enough to write recursion
relations,

~J0a � �2
2�3

~Jc~J
2
a=~J

2
b; ~J0b � �3

~Jc;

and ~J0c � �2�3
~Ja ~Jc=~Jb:

The gap in a given generation is proportional to the effec-
tive ~Jb; defining � � ~Ja=~Jb and eliminating ~Jc gives

�j�1 � �2
2�

2
j and �j�1 � �3

3�
1=2
j �j;

which correspond to the forms in Eq. (4) with k � 2 and
‘ � 1=2. So we obtain, for the whole regime 0 � � � 1,
the dynamical scaling form in Eq. (5) with an exponent
! � 1=2, as predicted for the XX chain, reproducing the
result for the random-singlet phase. In Fig. 2(b) we plot
 �T� for the XX chain calculated from both ND and the
MDH method, again obtaining very good agreement.
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FIG. 4. GS correlations for chains with RS couplings, obtained
from extrapolation of numerical MDH results for chains with 216

to 220 sites. (a) Cxx�r� (upper solid curve) and Czz�r� (lower solid
curve) for the XX chain. The dotted curve is proportional to
r�3=2. (Curves offset for clarity.) Inset: dominant Cxx correla-
tions, fitted by a law of the form rCxx�r� � y0 � y1 lnr (dashed
curve). (b) C�r� for the Heisenberg chain (solid curve). The
dotted curve is proportional to 1=r.
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For chains with RS couplings, effective-spin formation
from three-spin blocks determines the dominant GS corre-
lations. These blocks stem from both original three-spin
(and some five-spin) blocks and unrenormalized spins. An
effective spin represents all spins in the original block via
Clebsch-Gordan coefficients, allowing us to calculate cor-
relations between any two spins whose effective spins end
up in the same block at some stage of the RG process.
Because of the hierarchical structure seen in Fig. 3, for
each block renormalized at the jth generation the correla-
tion between its end spins connects a number of order 2j

original spin pairs separated by the same distance rj (the
size of the block), yielding a contribution gj to the average
correlation in the Heisenberg chain and Cxx�rj� in the XX
chain given by a geometric series in 2�2

3. For the
Heisenberg chain 2�2

3 � 8=9< 1, and thus

C�rj� � gjnj � $jc0jr
�1
j ; (6)

where c0 is the correlation between end spins in a three-
spin block and nj � $=rj is the fraction of such blocks in
the jth generation. For the XX chain 2�2

3 � 1, so that
Cxx�rj� carries a logarithmic correction,

Cxx�rj� � gjnj � jc0j�y0 � y1 lnrj�r�1
j ; (7)

where y0 and y1 are constants. The zz correlation between
end spins in a three-spin block is zero, so that the dominant
correlations correspond to spin pairs (connected through
one of the effective end spins and the middle spin) at dis-
tances r0j � 4j�1 � 4j�2 � 4j�3 � � � � � 1, with average
hr0ji � 4j�1, and are given by g0j � 1=2j�1. We then have

Czz�r0j� � g0jnj � $0jc00jhr
0
ji
�3=2: (8)

Equations (7) and (8) should be contrasted with the
random-singlet isotropic result C�r� � r�2, indicating a
clear distinction between the ground-state phases induced
07720
by disorder and aperiodicity, even in the presence of simi-
lar geometric fluctuations. This is related to the inflation
symmetry of the AS’s, which is absent in the random-bond
case (or in aperiodic systems with random perturbations
[16]). Its effects are exemplified by the fractal structure of
the GS correlations visible in Fig. 4, which displays results
from numerical implementations of the MDH method for
both XX and Heisenberg chains, showing conformance to
the scaling forms in Eqs. (6)–(8).

In summary, we have used the Ma-Dasgupta-Hu method
to investigate numerically and analytically the low-energy
properties of aperiodic antiferromagnetic XXZ chains.
From a general scaling argument, we suggest that the
effects of binary aperiodicity on the whole anisotropy
regime from the XX to the Heisenberg limits can be
classified based on the same wandering exponent (!)
which is know exactly to govern the scaling behavior of
aperiodic XX chains. We have also shown that ground-state
correlations are dominated by characteristic distances re-
lated to the rescaling factor of the sequences.

This work has been supported by the Brazilian agencies
CAPES and FAPESP. The author is indebted to T. A. S.
Haddad for fruitful conversations.

Note added.—While this Letter was under review, some
of the results for the Fibonacci chain were published in a
Letter by K. Hida [17].
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