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Surface Superconductivity of Dirty Two-Band Superconductors: Applications to MgB2

Denis A. Gorokhov
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA

(Received 17 December 2003; published 24 February 2005)
0031-9007=
The minimal magnetic field Hc2 destroying superconductivity in the bulk of a superconductor is smaller
than the magnetic field Hc3 needed to destroy surface superconductivity if the surface of a superconductor
coincides with one of the crystallographic planes and is parallel to the external magnetic field. While for a
dirty single-band superconductor the ratio of Hc3 to Hc2 is a universal temperature-independent constant
1.6946, for dirty two-band superconductors this is not the case. I show that in the latter case the interaction
of the two bands leads to a novel scenario with the ratio Hc3=Hc2 varying with temperature and taking
values larger and smaller than 1.6946. The results are applied to MgB2 and compared with recent
experiments (A. Rydh et al., cond-mat/0307445).
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FIG. 1. Hc3=Hc2 for the surface of the MgB2 crystal coincid-
ing with the ab plane and the external magnetic field lying in the
ab plane as a function of T=Tc for different ratios of the coupling
parameters and diffusivities in the two bands: coupling parame-
ters are taken from Ref. [19] and D2;c=D1;c � 100 or 600 (dash-
dotted line and dashed line, respectively); coupling parameters
andD2;c=D1;c � 126 are taken from the comparison with experi-
ments on the Hc2 anisotropy [20] (solid line). For T � Tc,
Hc3=Hc2 � 1:6946. The horizontal dashed line is the value of
1.6946. Inset: Hc3=Hc2 close to T=Tc � 1.
Introduction.—It is well established that strong mag-
netic field destroys superconductivity. If an external field
H applied to a type-II superconductor exceeds the second
critical field Hc2, the bulk order parameter in the super-
conductor vanishes. However, even for H >Hc2 super-
conductivity might still exist in a thin layer close to the
surface if H is smaller than the third critical field Hc3 >
Hc2 [1]. In this Letter, I investigate the onset of super-
conductivity via surface nucleation for the field H slightly
below the threshold Hc3.

In their pioneering work [1] Saint-James and de Gennes
have shown that if the external magnetic field is applied
parallel to the surface of an isotropic single-band super-
conductor [2] with a temperature close to the transition
temperature Tc the ratio Hc3=Hc2 takes the universal value
� � 1:6946 independently of the superconducting mate-
rial. For H slightly below Hc3 the superconducting order
parameter exists within the distance ��T� (the coherence
length of the superconductor) from the surface [1]. For
distances exceeding ��T� the order parameter approaches
zero rapidly. The dependence of the ratio Hc3=Hc2 on the
material properties [3–5], sample geometry and topology
[6–8], and temperature [9–11] has become a subject of
intensive investigations.

A novel window for investigating surface superconduc-
tivity was opened after the discovery of the two-band
superconductor MgB2 [12]. Not only has it a relatively
high ( � 40 K) Tc but also there exist two different super-
conducting gaps. As the consequence of this fact, various
properties of MgB2 are quite different from those of single-
band superconductors. For example, the anisotropy
	�T� � H�ab�

c2 �T�=H�c�
c2 �T� [here,H�ab�

c2 �T� andH�c�
c2 �T� stand

for the second critical fields in the ab and c directions,
respectively; note that the crystal of MgB2 is uniaxial] of
the field Hc2 exhibits strong dependence on temperature;
see, e.g., Ref. [13]. For single-band superconductors this
ratio is constant.

Another puzzle is that 	�T� varies widely in different
experiments [14]. This can be attributed to the exis-
05=94(7)=077004(4)$23.00 07700
tence of surface superconductivity which might affect the
observable values of Hc2 and, hence, the anisotropy.
Consequently, the determination of the third critical field
Hc3 is a important problem. In a recent experiment [15] it
has been shown that Hc3=Hc2 for MgB2 is reduced.

In this Letter, I investigate the ratio Hc3=Hc2 for a dirty
MgB2 crystal. The existence of two different gaps mani-
fests itself through the remarkable dependence of Hc3=Hc2
on temperature. This is in sharp contrast with the case of a
dirty single-gap superconductor where Hc3=Hc2 � � in
the whole temperature range. For a magnetic field lying
in the ab plane of the MgB2 crystal, I find that if one starts
decreasing temperature, Hc3=Hc2 first exhibits a maximum
at T � 0:99Tc and then a minimum at T � 0:9Tc. As
4-1  2005 The American Physical Society
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temperature decreases further, Hc3=Hc2 increases and
tends to a value slightly below �; see Fig. 1. Naively,
one could try to use the Ginzburg-Landau theory (GLT)
in order to find Hc3=Hc2. However, as will be explained
below, this would lead to the ratio Hc3=Hc2 � � in the
whole temperature range; i.e., one needs a more rigor-
ous approach in order to explain the deviation of Hc3=Hc2
from �.

General formalism.—An appropriate tool to investigate
magnetic properties of dirty superconductors is the Usadel
equations [16]. For two-band superconductors they have
been derived by Koshelev and Golubov [17] and by
Gurevich [18]. Since I investigate the onset of supercon-
ductivity near Hc2 or Hc3, it is possible to write the Usadel
equations in the linearized form

!f� �

�
�
X
j

D�;j

2

�
rj �

2�i
�0

Aj

�
2
�
f� � �; (1)

� � 2�T
X!D

!>0

���f�: (2)

Here, ! � 2�T�n� 1=2�; n � 0; 1; . . . and !D are the
Matsubara and cutoff phonon frequencies. D�;j is the
diffusion coefficient of the band � � 1; 2 along the direc-
tion j � x; y; z. The indices 1 and 2 correspond to the �
and� bands, respectively. A is the vector potential. � and
f� are the superconducting gap and anomalous green
function for the band �. The matrix �̂ represents the
strength of the coupling parameters. In the present work,
I use two matrices �̂: �11 � 0:81, �22 � 0:285, �12 �
0:119, and �21 � 0:09 (see the electronic structure calcu-
lations in Ref. [19]) and �11 � 0:695, �22 � 0:260, �12 �
0:177, and �21 � 0:140 (see the fit with the experiment in
Ref. [20]). In this Letter, I will concentrate on two geome-
tries: (i) the magnetic field is parallel to the c axis and the
surface of the crystal; (ii) the surface of the superconductor
coincides with the ab plane, and the field H lies in the ab
plane. As I will show, in case (i) Hc3=Hc2 � � at any
temperature. In case (ii), Hc3=Hc2 is shown in Fig. 1. I
assume that H is parallel to the z axis.

Choosing the gauge as Ay � Hx, I look for the solution
of the form f� � f��!; x� exp�ikyy� ikzz� and � �

��x� exp�ikyy� ikzz�. In general, Eqs. (1) and (2) define
a sequence of solutions corresponding to different eigen-
values H � Hc2 or H � Hc3. One should look for the
maximal possible values of Hc2 or Hc3. This corresponds
to the case kz � 0. Substituting the ansatz for f� and �
into (1) and (2), I obtain the system of equations

�̂�1
�1�x�

2�x�

�
�

0
@2�T

P!D
!>0

1
!�Ĥ1�x0�

0

0 2�T
P!D
!>0

1
!�Ĥ2�x0�

1
A

	

�1�x�

2�x�

�
; (3)
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where

Ĥ ��x0� � �
~D�;x

2

@2

@x2
�

~D�;z

2

�
2�H
�0

�
2
�x� x0�2; (4)

with ~D�;x � ~D�;z � D�;a for case (i) and ~D�;x � D�;a and
~D�;z � D�;c for case (ii) (D�;a � D�;b � D�;c are the
diffusion coefficients along the crystallographic axes).
x0 � ky�0=2�H is the parameter characterizing how far
away the superconducting nucleus is situated from the
surface. Note that x0 is the same for the both bands. The
operator (4) can be rewritten in the form ��H=�0�	�������������������
~D�;x

~D�;z

q
ĥ��x00�, with

ĥ ��x0�;0� � �
@2

@x02�
� �x0� � x0�;0�

2; (5)

where I have made the variable substitution x � ��x
0
� and

x0 � ��x0�;0, with �� � � ~D�;x= ~D�;z�
1=4��0=2�H�1=2.

The system (3) should be solved with the boundary
conditions (BC) @�=@xjx�0 � 0, and ��x!�1�! 0,
� � 1; 2 valid for geometries (i) and (ii); see above. For
Hc3 the BC are well established for dirty superconductors
[5]. For Hc2 the application of these BC gives the same
result as the BC requiring the appearance of a supercon-
ducting nucleus in the bulk. The procedure for finding
Hc3=Hc2 is as follows: First, set x0 � 0 in (3) and find
the maximal possible field H for which the solution sat-
isfying the BC exists. This gives Hc2. Next, for x0 � 0 find
the maximal field H � H�x0� for which the solution of (3)
exists. Then, Hc3 � maxx0fH�x0�g. I would like to mention
that there are complementary approaches for calculating
Hc2 based on microscopic theory [21,22] and GLT [23,24].

Here, it is instructive to study briefly the case of a single-
gap superconductor. This corresponds to �12 � �21 � 0.
Hc2 and Hc3 are then determined by those for band 1 (as
�11 > �22). The solution for 1�x� is proportional to the
ground-state wave function of the operator Ĥ1�x0� and
2�x� � 0. Substituting this ansatz into (3), I obtain the
transcendental equation of the form

1� �11

X!D

!>0

1

!� ��H=�0�
�����������������
~D1;x

~D1;z

q
�0�x

0
1;0�

� 0; (6)

with �0�x0�;0� the lowest eigenvalue of the operator
ĥ��x

0
�;0�. The field Hc2 can be found as the solution of

the above equation for x01;0 � 0; note that �0�0� � 1.
Assume a certain value of the magnetic field Hc2 is found;
let us change the parameter x01;0. This leads to the decrease
of the eigenvalue �0�x01;0� [1]. In order to satisfy Eq. (6) one
has to increase the field H; that is why Hc3 >Hc2. The
minimal �0�x01;0� can be realized for x01;0 � 0:7618 [1] and
is equal to 0.5901 [1]. This means that Hc3=Hc2 �
1=0:5901 � � for any temperature T. Remarkably, it is
not necessary to solve Eq. (6) in order to find the ratio
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Hc3=Hc2, although the determination of Hc2 or Hc3 alone
would require the complete analysis.

Case (i).—In this case, the ratio Hc3=Hc2 � � at all
temperatures. This is a consequence of the fact that the
operators Ĥ1�x0� and Ĥ2�x0� have identical eigenfunctions
(since ~D1;x= ~D1;z � ~D2;x= ~D2;z � 1). The functions 1�x�
and 2�x� are proportional to the ground-state wave
function of the operator Ĥ1�x0� [or Ĥ2�x0�]. The equation
determining the critical fields Hc2 and Hc3 has the form
F��D1;aH�0�x

0
1;0�=�0; �D2;aH�0�x

0
2;0�=�0� � 0, with

F�y1; y2� a certain function of two arguments. Note that
in the present case �1 � �2 and, consequently, x01;0 � x02;0
and �0�x01;0� � �0�x

0
2;0�. The maximal value of Hc3 can be

realized for x01;0 � 0:7618 and is equal to �Hc2 for all
temperatures.

Case (ii).—If the magnetic field lies in the ab plane, the
operators Ĥ1�x0� and Ĥ2�x0� have different eigenfunctions.
This leads to a complicated transcendental equation de-
pending on all eigenvalues of the operators Ĥ1�x0� and
Ĥ2�x0� and not only on the ground-state ones. Equation (3)
can be solved via expanding functions 1�x� and 2�x�
over the eigenfunctions of the operators Ĥ1�x0� and
Ĥ2�x0�. I have truncated the basis of the operators Ĥ1�x0�
and Ĥ2�x0� to subspaces consisting of 70 eigenfunctions
and solved the system (3) numerically. In Fig. 1 I show the
results of the numerics. Here, I take D1;a=D1;c � 40:0 and
D2;a=D2;c � 0:665. These ratios can be obtained using the
results for the average velocity on the MgB2 Fermi surfaces
and assuming isotropic scattering; see Refs. [25,26]. The
ratio D2;c=D1;c takes the values 100 and 600 for the matrix
�̂ calculated numerically [19]. This choice is motivated by
the facts that the ratio D2;c=D1;c � 100 can be obtained
assuming that the scattering rate of electrons is the same in
the both bands. On the other hand, R � D2;c=D1;c � 600
gives a better fit with experiments on the anisotropy mea-
surements [25]. Also, I use the matrix �̂ and D1;c=D1;a �

30, D1;c=D1;a � 0:96, and D2;c=D1;c � 126 from the fit
with experiments [20].

The results are shown in Fig. 1. For temperatures T &

0:6Tc I have found that the ratioHc3=Hc2 is nearly constant
and has a value slightly below �. This can be explained by
the fact that at low temperatures the fields Hc2 and Hc3 are
determined mostly by the � band whose coherence length
is much smaller than that of the � band. At low T the
magnetic field Hc2 depends on the ground-state eigen-
values of the operators Ĥ1�x0� and Ĥ2�x0� and the contri-
bution of excited states is negligible [17,18]. The ratios
� ~D1;x= ~D1;z�

1=4 and � ~D2;x= ~D2;z�
1=4 determining the length x0

are equal to � 2:5 and 0.9, respectively. This means that
one can maximize the fieldHc3 by choosing x01;0 � 0:7618.
The length x02;0 then is large, and the ground-state eigen-
value of ĥ2�x02;0� is close to 1. Hc3=Hc2 then can be calcu-
lated as follows: take the zero temperature expression for
07700
Hc2 [18,25], and make there a substitution D1;j ! D1;j=�.
At low temperatures [18,25], Hc2 � �0Tc exp�g=2�=
2	�D1;aD1;cD2;aD2;c�

1=4, with g � ��20=w
2 � ln2$=4�

2�� ln$=w�1=2 � �0=w, $ � D2;aD2;c=D1;aD1;c, �� �

�11 � �22, �0 � ��2� � 4�12�21�
1=2, w � �11�22 �

�12�21, and ln	 � 0:5772. This procedure yields
Hc3=Hc2 � 1:688; 1:691 for D2;c=D1;c � 100 and 600, re-
spectively, and Hc3=Hc2 � 1:6728 for D2;c=D1;c � 126.
The values obtained in the numerics are slightly larger
(but still smaller than �) due to a small contribution to x0
from the � band.

If one increases temperature, the ratio Hc3=Hc2 de-
creases and exhibits a minimum at T ’ 0:9Tc. Then, the
value of Hc3=Hc2 goes up and takes a maximum at T ’
0:99Tc. At T � Tc, Hc3=Hc2 � �. The nontrivial behavior
of the ratio Hc3=Hc2 in MgB2 is due to the changing
relative importance of the � band. While at low T it is
unimportant, at high T it gives a contribution to the fields
Hc2 and Hc3 comparable with that of the � band.
Remarkably, deviations from the GLT are maximal close
to Tc, similar to the Hc2 anisotropy [25].

Let us analyze the situation close to Tc in more detail. In
particular, let us explain why at T � Tc,Hc3=Hc2 � �. For
Tc � T � Tc the field Hc3 is small and so are the eigen-
values of the operators Ĥ1�x0� and Ĥ2�x0�; i.e., one can use
the expansion

P!D
!>0 1=�!� Ĥ��x0�� �

P!D
!>0 1=!�P!D

!>0 Ĥ��x0�=!
2 � � � � , and Eq. (3) can be rewritten in

the form

Ŵ
�
1�x�
2�x�

�
�

�
R̂1�x0� 0

0 R̂2�x0�

��
1�x�
2�x�

�
; (7)

with ~W � �̂�1 � ln�2	!D=�T�12 and R̂��x0� �
2�T

P!D
!>0 1=�!� Ĥ��x0�� � 2�T

P!D
!>0 1=!. Tc is de-

termined by detŴ � 0. Solving the system (7) for 1�x�,
I obtain

�W11R̂2�x0� �W22R̂1�x0� � R̂2�x0�R̂1�x0��1�x� � 0:

(8)

Equation (8) determines the fields Hc2 and Hc3. To lowest
order, one can neglect the term R̂2�x0�R̂1�x0�.

The equation �W11R̂2�x0� �W22R̂1�x0��1�x� � 0 has
the ground-state solution of the same form as Eq. (3) for
a single-gap superconductor (the case �12 � �21 � 0)
with ~D1;x ! DX � W22

~D1;x �W11
~D2;x and ~D1;z ! DZ �

W22
~D1;z �W11

~D2;z, and the problem of finding Hc3 be-
comes equivalent to the original one considered by Saint-
James and de Gennes [1]. Consequently, to lowest order in
Tc the ratio Hc3=Hc2 has the same value � as in the case of
a single-gap superconductor. The approximation described
above is equivalent to the GLT; i.e., the GLT is unable to
explain deviations of Hc3=Hc2 from �.

The maximum of Hc3=Hc2 takes place very close to
Tc and is at the boundary of the accuracy of the pres-
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ent numerical calculations; i.e., an analytical approach
would be useful. Temperature corrections to Hc3=Hc2

can be found by expanding R̂1�x0� and R̂2�x0� to order
�Tc � T�2. One can decompose the operator in the left-
hand side of (8) as a sum L̂1�H; x0� � L̂2�H; x0�, with
L̂1�H; x0� / Tc � T and L̂2�H; x0� / �Tc � T�2. Let j)0i

be the solution of the equation L̂1�H; x0�j)0i � 0 andH �

H�0��x0� the critical field to this order. The correction to the
eigenvalue can be found perturbatively and are determined
by the implicit relation

h)0jL̂1�H; x0�j)0i � h)0jL̂2�H
�0�; x0�j)0i � 0: (9)

To this order, x0 � 0:7618�DX=DZ�
1=4��0=2�H�0��1=2.

Temperature corrections to Hc3 due to change in x0 are
proportional to �Tc � T�3 and can be neglected. Since j)0i,
L̂1�H; x0�, and L̂2�H; x0� are known, one can find Hc3=Hc2
analytically. Straightforward but quite cumbersome
calculations [27] show that near Tc, Hc3=Hc2 � � �
b�Tc � T�=Tc, with b ’ 1 for D2;c=D1;c in the range from
100 to 600, in accordance with the numerics; see inset in
Fig. 1.

Experiment.—Recent experiments [15] show that the
ratio Hc3=Hc2 is reduced in the case (ii). The values
Hc3=Hc2 � 1:5 in the temperature range 20–30 K have
been reported. For case (i), Hc3=Hc2 � 1:7 [14,15]. The
present theory gives that Hc3=Hc2 � � for case (i) and
Hc3=Hc2 <� for case (ii), in agreement with [14,15].
There are three main sources of deviation in the exact
value Hc3=Hc2 between theory and experiment. First, sur-
face quality [28] might affect Hc3=Hc2. Second, there is an
error in determining the resistive transition. Third, MgB2 is
situated somewhere at the boundary of the applicability of
the weak-coupling BCS theory. It would be interesting to
repeat the calculation done in the present Letter starting
from the Eliashberg equations.

The method described above can be generalized for an
arbitrary direction of crystallographic axes with respect to
the surface of a superconductor. For strongly anisotropic
superconductors, surface superconductivity might disap-
pear if the surface does not coincide with crystallographic
planes [8]. Estimates [27] show that MgB2 is sufficiently
anisotropic in order to observe this kind of effects. The
detailed analysis of the onset of surface superconductivity
in this case is challenging for both theorists and
experimentalists.

In conclusion, I have presented the calculation of the
ratio Hc3=Hc2 for the two-band superconductor MgB2 in
the dirty limit. Remarkably, in contrast to the case of a
single-gap superconductor, the above ratio is temperature
07700
dependent. The Ginzburg-Landau theory is unable to ex-
plain deviations of Hc3=Hc2 from �.

The present work is supported by the Packard
Foundation. D. A. G. thanks M. Angst, A. E. Koshelev,
and A. Rydh for helpful discussions.

Note added in proof.—Very recently, the effects of the
interaction between electrons in different bands on vortices
in MgB2 have also been taken into account (cf. [29]).
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