
PRL 94, 076102 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 FEBRUARY 2005
Two-Dimensional Carbon Incorporation into Si(001):
C Amount and Structure of Si�001�-c�4� 4�
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The C amount and the structure of the Si�001�-c�4� 4� surface is studied using scanning tunneling
microscopy (STM) and ab initio calculations. The c�4� 4� phase is found to contain 1=8 monolayer C
(1 C atom in each primitive unit cell). From the C amount and the symmetry of high-resolution STM
images, it is inferred that the C atoms substitute the fourth-layer site below the dimer row. We construct a
structure model relying on ab initio energetics and STM simulations. Each C atom induces an on-site
dimer vacancy and two adjacent rotated dimers on the same dimer row. The c�4� 4� phase constitutes the
subsurface Si0:875C0:125 � layer with two-dimensionally ordered C atoms.
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FIG. 1 (color online). (a) A bird’s eye view of the C-induced
DV41 defect. (b)–(e) Schematic diagrams of previously pro-
posed models for the Si�001�-c�4� 4� phase: (b) missing dimer
[16], (c) ad-dimer [8], (d) six-C-cluster [9,18], and (e) Si-C
heterodimer [12] models. Atoms in two surface layers and the
fourth-layer C [(b),(e)] are shown. Dashed squares indicate the
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-R45� primitive unit cell.
Carbon incorporation into Si(001) is important in devel-
oping noble technologies compatible with the silicon tech-
nology. To list several of many, they are high-speed
Si-based devices, strain engineering, band gap tailoring,
and surface functionalization. Such developments are
generally prevented from the extremely low solubility
(&10�3%) of C in bulk Si. But, there have been some
reports that C atoms can be incorporated into Si(001) up to
a few tens of percent using nonequilibrium methods [1–3].
This enhanced near-surface solubility was ascribed to the
energy lowering through the coupling of the impurity stress
to the surface stress field [2].

A microscopic understanding on the initial C incorpo-
ration into Si(001) was achieved only very recently [4]. In
the isolated incorporation, C atoms adopt a very stable con-
figuration, the so-called DV41 defect shown in Fig. 1(a).
Such DV41 defects arrange into one-dimensional (1D) line
segments across the dimer rows at low C concentrations,
forming a 2� n superstructure. With more C atoms, it has
been observed that patches of a two-dimensional (2D)
c�4� 4� phase are formed [5].

The Si�001�-c�4� 4� phase has been extensively studied
for several decades, but no consensus has been reached yet
on its atomic structure. It has been reported to be formed by
various procedures: Si homoepitaxy [6,7], exposure to
various gases such as H2 [8,9], Si2H6 [10], C2H2 [11],
and C2H4 [12], adsorption and desorption of Bi [13] or S
[14], and even the simple annealing of Si(001) in ultrahigh
vacuum (UHV) [15,16]. Early studies claimed that the
c�4� 4� phase is one of the intrinsic Si(001) reconstruc-
tions without any foreign element [8,14]. Such a claim has
been rebutted by recent studies, and the existence of C is
generally accepted [9,12,15–19]. However, it is still under
debate as to the role of C in forming Si�001�-c�4� 4�.
Some claim that C atoms provide global strain inducing
the c�4� 4� reconstruction of Si(001) [15,17]. Others
consider C to be a basic ingredient of the c�4� 4� phase
[9,12,18,19]. Accordingly, several structural models have
05=94(7)=076102(4)$23.00 07610
been proposed with [9,12,16,18] or without [8,17] C atoms
[see Figs. 1(b)–1(e)]. In this sense, the C concentration is
at the center of the debate, but it is still controversial
despite several attempts to measure it [15–17].

In thisLetter,wereportacomprehensivestudyusing scan-
ning tunneling microscopy (STM) on the C-incorporated
Si(001) surface. Two phases, the 2� n and the c�4� 4�,
coexist for the C concentration between 0.05 and
0.12 monolayer (ML). [We define 1 ML as the C concen-
tration equivalent to 1 C atom per 1� 1 unit cell of
Si(001).] By analyzing the STM images, the C concentra-
tion in the c�4� 4� phase is found to be 1=8 ML. We
propose models of the c�4� 4� phase which are compat-
ible with the C amount and the symmetry of the STM
images and examine them by ab initio total energy calcu-
lations and STM image simulations. The models are char-
acterized by the DV41 defect and two adjacent 90�-rotated
Si dimers (RDs).
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Experiments were performed using a homemade STM
in an UHV chamber with the base pressure of 1:2�
10�10 Torr [20]. We used C2H2 gas as the C source, since
the C2H2 molecules chemisorb uniformly on the Si(001)
surface with the probability near unity at room temperature
(RT) [21], and the chemisorbed molecules are effectively
dissociated by brief heating [22]. The C2H2 gas was dosed
on the Si(001) surface at RT by backfilling the UHV
chamber at 6:2� 10�10 Torr. Subsequent annealing of
the sample at 900–1000 K for 2 min causes thermal
dissociation of C2H2 and C incorporation into Si(001).

The concentration of incorporated C atoms (�C) was
determined from the dosing time and then calibrated to
the number of DV41 defects counted in the samples having
only the 2� n phase. Notice that the number of C atoms in
the 2� n phase can be measured unambiguously by count-
ing DV41 defects. In our experiments, dosing time as long
as 24 s was needed to increase 0.01 ML of C concentration.
This makes the experimental procedure stable and control-
lable. The error in the C concentration is estimated to be
smaller than 0.005 ML.

We have performed an extensive set of STM experi-
ments by varying �C. For �C below 0.05 ML, we observed
only one type of C-induced STM feature, which is the
DV41 defect [4]. At around �C � 0:05 ML, the c�4� 4�
phase begins to appear as small patches. The c�4� 4�
patches grow with increasing �C and cover the whole
surface at around 0.12 ML [see Figs. 2(a)–2(c)]. For the
�C above 0.13 ML, the surface develops roughness, and we
could not obtain atomically flat terraces. It is likely that the
C concentration in the c�4� 4� phase, �c�4�4�, is 1=8 ML,
implying one C atom incorporated in each primitive unit
cell on the average. This may support the picture that C is a
constituent of the c�4� 4� phase.

For a more quantitative analysis, we examined the lower
coverage regime where the c�4� 4� and the 2� n phases
coexist. We prepared several tens of C-incorporated
Si(001) surfaces by varying �C in the range between 0.06
and 0.12 ML. For these samples, we measured the frac-
(a) (b)

FIG. 2 (color online). Filled-state STM images of C-incorporated
where the c�4� 4� patches are surrounded by the 2� n phase. The i
phase on the same terrace. (b) �C ’ 0:11 ML, where the c�4� 4� ph
covered with the c�4� 4� phase. The inset shows both � and  pri
clearly showing that the central features (a bright protrusion in the �
are in registry with every second dimer row on the lower terrace, as
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tional area (S) of the c�4� 4� phase using STM images of
an area as large as 1500� 1500 �A2 to guarantee the statis-
tical analysis. Figure 3 shows a plot of the measured S ver-
sus �C. The linear regression analysis yields S � a�C � b
with a � 14:00	 0:58 and b � �0:70	 0:05. Consider-
ing the conservation of incorporated C atoms that can be
expressed by

�C � S�c�4�4� � �1� S��2�n; S �
�C � �2�n

�c�4�4� � �2�n
;

where �2�n is the C concentration in the coexisting 2� n
phase, the linear regression results are translated into
�c�4�4� � 0:12	 0:01 and �2�n � 0:05	 0:006 ML.
This estimate of �c�4�4� agrees with the implication from
the fully covered c�4� 4� phase and leads us to conclude
that �c�4�4� � 1=8 ML regardless of �C.

To verify the validity of the above procedure, we per-
formed independent measurements of �2�n. For �C ranging
from 0.07 to 0.09 ML, where the 2� n patches are large
enough to guarantee the negligible statistical error, we
measured �2�n by counting the DV41 defect in the 2� n
regions of the STM images. The measured �2�n was
0:048	 0:004 ML regardless of �C, agreeing with the
estimate from the linear regression analysis.

Now we describe the characteristics of the c�4� 4�
phase that should be satisfied by any plausible structure
model. From the high-resolution STM images such as the
insets of Fig. 2, four experimental constraints can be
extracted. (i) There exist two different primitive cells,
called � and , with random distribution and approxi-
mately equal population. (ii) In the filled-state image
[Fig. 2(c)], the � cell shows a bright oblong protrusion
which has been thought to be the normal Si dimer
[9,16,17]. Then the central depression in the  cell is
believed to be the dimer vacancy (DV). (iii) Within both
� and  cells, the STM image appears symmetric with
respect to both the dimer-bond and the dimer-row direc-
tions. (iv) Regardless of � or , pairs of round protrusions
are formed on and directed along dimer rows with �4
(c) (d)

β

α

Si(001) with different C concentrations (�C). (a) �C ’ 0:06 ML,
nset shows that the c�4� 4� phase appears darker than the 2� n
ase is the majority. (c) �C ’ 0:12 ML, where the whole surface is
mitive unit cells of the c�4� 4� phase. (d) A two-terrace image
cell and a depression in the  cell) of upper-terrace c�4� 4� cells

pointed out by the arrowheads, indicating the �4 periodicity.
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FIG. 4 (color online). Schematic diagrams of the models based
on (a) DV41 and (b) DV41� 2RD. (c),(d) STM simulations on the
RD� model are compared with experiments at the sample bias
voltage of �2:5 V: (c) the filled-state STM image and (d) the
line profile along AB in (c) with the side view of RD�. The
dashed squares and rectangle indicate
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FIG. 3 (color online). The fractional area (S) occupied by the
c�4� 4� phase at different �C’s. The symbols ( � ) are measured
data and the thick solid line is the linear fit. Dashed (dotted) lines
are hypothetical curves for �c�4�4� � 1=16 and 1=4 with �2�n �

0:05 (0.0) ML.
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periodicity as seen in the inset of Fig. 2(a) and in Fig. 2(d).
The paired round protrusions are 180� out of phase on
neighboring dimer rows and complete the perfect c�4� 4�
order [see the corners of the dashed squares in Fig. 2(c)].

Let us test previously proposed models of Si�001�-c�4�
4� on the ground of the aforementioned constraints. Of the
previous models shown in Figs. 1(b)–1(e), the ad-dimer
and six-C-cluster models satisfy constraints (i)–(iv) but
contradict our finding of �c�4�4� � 1=8 ML. The Si-C
heterodimer model [12] incorrectly predicts the pairing
of round protrusions across the dimer rows, contradicting
constraint (iv). In addition, it contains 1=4 ML C, being
incompatible with the present C amount result. Hence the
models of Figs. 1(c)–1(e) should be excluded. The missing
dimer model in Fig. 1(b) is compatible with all the con-
straints and the C amount and is examined by ab initio
calculations as described below.

The C amount of �c�4�4� � 1=8 ML can be realized in
many ways. The simplest case would be the structures with
uniform C distribution, i.e., with 1 C atom in each
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-R45� cell. Or, one can imagine structures with 0 and
2 C atoms in two adjacent
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-R45� cells. Finally,
many structures with even less uniform C distribution can
be devised.

Restricted to the simplest case, due to constraints (iii)
and (iv), C atoms should occupy the fourth-layer site under
the dimer row. This inferred C site is compatible with a
recent photoemission spectroscopy study suggesting the
presence of the unique subsurface C species [19]. The C
atom incorporated in this site is known to create a DV
above it and to form the DV41 defect [4]. Thus we con-
struct models based on the DV41 defects. The simplest
model is the DV41� shown in Fig. 4(a), which is con-
structed by placing DV41 defects with the c�4� 4� peri-
odicity. This model turns out to be the same as the pre-
viously proposed missing dimer model [Fig. 1(b)]. The
model DV41 for the  cell is derived from DV41� by re-
moving the Si dimer in between two DV41s. We obtain the
07610
other set of models, �DV41� 2RD�� and �DV41� 2RD�
shown in Fig. 4(b), by rotating the Si dimers adjacent to the
DV41 defect in DV41� and DV41 by 90�, respectively. We
call these models RD� and RD for simplicity.

We examined the proposed models by performing the
density-functional theory (DFT) calculations within the
generalized gradient approximation using the VASP [23]
and ultrasoft pseudopotentials [24]. We used the energy
cutoff of 300 eV and the k points equivalent to an 8� 8
mesh within the 1� 1 surface Brillouin zone. The theo-
retical lattice constant was 5:46 �A. The surface was mod-
eled by a slab composed of ten Si layers with a H passi-
vated bottom surface and an 8- �A-thick vacuum. The
c�4� 4� conventional unit cell was used, unless stated
otherwise. We optimized the geometries until the forces
on atoms became smaller than 0:01 eV= �A while the H
atoms and the two bottom Si layers are fixed.

The stability of the proposed models was examined by
calculating the surface free energy F��� of the model �,

F��� � EDFT��� � nSi����Si � nC����C;

where EDFT is the DFT total energy, nX and �X are the
number of atoms and the chemical potential for atomic
type X (X � Si or C), respectively [25]. The RD� and RD

are found to be energetically comparable, showing the
energy difference as small as 0:04 eV=�
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�. On
the other hand, the DV41� and DV41 are energetically
unfavored by 0.11 and 0:77 eV=�
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8
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�, respectively,
compared with the RD�. This suggests that the DV41� and
DV41 models may be excluded.

Then, to simulate the experimental observation (i) of
coexisting � and  cells, we examined a structure with the
mixed pair of the � and  cells aligned along the dimer
row, using a 2
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-R45� surface cell. This structure is
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designated as RD� and is shown in Figs. 4(c) and 4(d). The
RD� is found to be more stable than the RD� by
0:06 eV=�
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�
���

8
p

�. This may explain the observation
that the � and  cells are almost equally populated.
Using the relaxed geometry, the constant-current STM
images were calculated within the Tersoff-Hamann ap-
proximation [26]. The theoretical STM image and the
line profile of RD� reproduce the experimental feature
well, as compared in Figs. 4(c) and 4(d) [27,28].

For the cases of less uniform C distribution, we consid-
ered a model with two alternating
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-R45� cells
where one cell contains two C atoms at the third-layer
sites (the DV32 configuration in Ref. [4]) and the other
none. This model turns out to have higher energy than the
RD� by 1:0 eV=�
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�. Based on this, we infer that
structures with more localized C atoms (or less uniform
C distribution) should have even higher energy. This,
in conjunction with the energetics and STM simulations
for the uniform C distribution, suggests that the RD� and
RD models are the structures for the � and  cells of
Si�001�-c�4� 4�, respectively.

According to our models, the paired round protrusions
are identified as two buckled RDs next to the DV41 defect.
To elucidate the origin of dimer rotation, we examined a
lower coverage (1=16 ML) case employing 2� 8 struc-
tures with C-induced defects running across the dimer
rows, where C atoms are arranged in �8 periodicity along
the dimer row. The 2� 8 structure with DV41 defects,
which is in fact the lowest energy configuration at this
coverage [4], is calculated to be more stable than that
with (DV41� 2RD) defects by 0:12 eV=�C atom�. This
stability is opposed to the 1=8-ML c�4� 4� case, where
the RD� model is more stable than the DV41� by
0:11 eV=�C atom�. Thus, the dimer rotation in the c�4�
4� phase seems to occur to relieve the increased tensile
stress due to the �4 arranged C atoms along the dimer row.

It is interesting to notice that C atoms adopt a unique
structural and chemical configuration in various
C-containing phases. In the isolated incorporation, the
DV41 defect is formed. By increasing the C amount, the
DV41s form segments of chains, and finally the c�4� 4�
reconstruction. However, the surface structures are differ-
ently modified to relieve the stress effectively for different
C amounts. The resulting Si(001) surfaces provide the
subsurface Si1�xCx � layers with either 1D (2� n) or 2D
[c�4� 4�] ordering of C atoms. Thus the C incorporation
into Si(001) can be utilized for the strain engineering of
Si-based devices or for the controlled growth of various
nanostructures.

In conclusion, we have determined the C amount in the
C-incorporated Si�001�-c�4� 4� surface using STM. On
the average, the c�4� 4� phase contains 1=8 ML C. We
constructed structure models of the c�4� 4� phase, which
contains one C atom in each
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-R45� cell. The
models are characterized by the DV41 defect and two
adjacent RDs. Ab initio calculations show that the pro-
07610
posed models are energetically favorable and reproduce
the STM features well.
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[16] H. Nörenberg and G. A. D. Briggs, Surf. Sci. 430, 154

(1999).
[17] S. T. Jemander, H. M. Zhang, R. I. G. Uhrberg, and G. V.

Hansson, Phys. Rev. B 65, 115321 (2002).
[18] O. Leifeld et al., Phys. Rev. Lett. 82, 972 (1999).
[19] J. R. Ahn, H. S. Lee, Y. K. Kim, and H.-W. Yeom, Phys.

Rev. B 69, 233306 (2004).
[20] J.-Y. Koo et al., Phys. Rev. B 57, 8782 (1998).
[21] W. Kim et al., Phys. Rev. B 64, 193313 (2001).
[22] P. A. Taylor et al., J. Am. Chem. Soc. 114, 6754 (1992);

C. Huang, W. Widdra, X. S. Wang, and W. H. Weinberg,
J. Vac. Sci. Technol. A 11, 2250 (1993).

[23] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11 169
(1996).

[24] D. Vanderbilt, Phys. Rev. B 41, R7892 (1990).
[25] We used the cohesive energy of bulk Si for �Si, which is

usual. Regardless of the choice of �C, the relative stability
is not affected since the number of C atoms is the same in
all the considered models.

[26] J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998
(1983); Phys. Rev. B 31, 805 (1985).

[27] In contrast to normal Si dimers, RDs would not undergo
flip-flop motion at RT as the environment of two atoms in
a RD are inequivalent. The RDs buckled in the other way
were unstable and relaxed back to the configuration as
shown in Fig. 4.

[28] Simulations with DV41-based models show poor agree-
ment with the experimental images.


