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When a chain, tethered at one end, is immersed in a fixed entanglement network, the mobile tip of the
chain encounters an entropic potential barrier that penalizes deep fluctuations needed to bring the tip close
to the tethering point. Using the tube model, Doi and Kuzuu [J. Polym. Sci., Polym. Lett. Ed. 18, 775
(1980)] estimated that this potential, which is crucial to describe the rheology of branched polymers in
fixed networks and melts, has a quadratic form with a prefactor » = 1.5. Later calculations based on
regular lattices indicated that the potential is nonquadratic, and its steepness depends on the lattice
coordination number. In this Letter, we analyze the primitive paths obtained using the bond-fluctuation
model for chains with up to 12.5 entanglements. Our simulations confirm a quadratic form for the
potential with a prefactor close to the Doi-Kuzuu value, v = 1.5.
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Introduction.—The rheology of branched polymer melts
is of enormous scientific and commercial interest.
Relaxation in these polymers is primarily controlled by
the process of contour-length fluctuation, where an arm
tethered at one end by the branch point renews its con-
formation by a series of “inward” and ‘““outward” fluctua-
tions along its contour within the hypothetical “tube” that
confines its lateral motion. The arm pays a stiff entropic
penalty for large inward excursions since they necessitate
the formation of large unentangled loops, making such
configurations exponentially rare. The retraction of the
tip of the arm towards the branch point along its contour
can be considered as an activated process and may be
mapped approximately to the problem of a Brownian
particle diffusing over an entropic barrier. For a chain
exploring its conformations in a fixed entanglement net-
work, this entropic potential can be constructed by sum-
ming up the contributions of the rubber elastic and the end-
tension terms [1-3]. If we define the primitive path corre-
sponding to a given conformation of a polymer chain
immersed in a network of obstacles as the shortest path
connecting the two ends of the polymer chain subject to the
topological constraints imposed by the obstacles [4], then
the entropic potential can be derived, under the simplifying
assumption of a straight tube as
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where L is the length of the primitive path which fluctuates
around a equilibrium value L., according to the quadratic
potential above, a is the average length of a primitive-path
step, and ¥ = 3/2 is a constant whose value arises from
tube model [1].

Lattice calculations based on primitive-path analysis of
a chain in a regular lattice of fixed obstacles [5—8] indicate
that while a quadratic describes shallow fluctuations
around L., quite well, the potential experienced by a chain
end for deep fluctuations is not as steep as that specified by
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(1). The shape and depth of the potential are found to
depend on details of the lattice, such as the coordination
number z and the ratio of the lattice spacing c, to the
random walk step length b. For example, 2D and 3D
lattices have been found to have deviations from a qua-
dratic potential, and the quadratic part of the potential has a
prefactor given by v = z(z —2)/8(z — 1) [9,10], when
c/b = 1. This potential agrees with the classical potential
with v = 1.5, if z is arbitrarily set to z = 13. Likewise, for
deep fluctuations on a regular 3D cubic lattice the value of
v varies from 3.403 to 0.850 [8], as ¢/b increases from 1 to
64, with v = 1.5 around c¢/b = 7. Unfortunately, for
branched polymers, many important rheological properties
are governed by these deep fluctuations, for which the
primitive-path length L = a, where the disagreement be-
tween the traditional potential given by Eq. (1) with v =
1.5 and predictions of the lattice models is most severe.
Currently, despite criticism, Eq. (1) continues to be widely
used because of the absence of a superior alternative and is
a vital component of nearly all theories describing the
dynamics of branched polymers in melts, where the qua-
dratic potential derived for a fixed network is modified to
include the effect of simultaneous relaxation of matrix
chains by constraint release [11-13]. Obviously, if we do
not know what potential should be used for a fixed entan-
glement network, we cannot use experimental data to
assess the degree to which constraint release modifies
that potential.

In this Letter, we calculate the fluctuation potential
directly from the primitive-path statistics using the bond-
fluctuation model [14] (BFM), modified by Shaffer
[15,16]. The BFM has been shown to reproduce important
features of entangled linear [15,16] and star [17] polymers.
We also adapt the procedure described in [18] for comput-
ing the primitive paths of chains in an off-lattice molecular
dynamics (MD) simulation, to the lattice-based BFM. We
generate a statistical distribution of primitive paths from
which the entropic potential is inferred. Moreover, our
method for constructing the potential is general, and is
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applicable to real space simulations, once computer power
becomes adequate to carry out the large number of realiza-
tions required for accurate calculation of the potential to be
obtained.

Simulation method.—In the modified BFM [15], poly-
mer beads are placed on a simple cubic lattice, where
excluded volume interactions are implemented by allowing
only a single bead to occupy a lattice site at any given
instant. Chain connectivity is maintained by restricting the
lengths of bonds connecting neighboring beads to the set
{1,+/2,\/3} in units of lattice spacing. Because of the
geometry of the lattice, chain uncrossability is enforced
by forbidding the intersection of the midpoints of the
bonds. To execute chain motion, we attempt to move a
randomly selected bead to one of the six nearest-neighbor
sites. A move is accepted if it does not violate the excluded
volume, chain connectivity and chain uncrossability
conditions.

To initialize, chains are simultaneously grown on the
lattice with bond types {1, v/2, v/3} chosen with probabil-
ities {3/13, 6/13,4/13}, respectively. During the growth
phase, excluded volume is enforced, but intersection of
chains is permitted.

After generating the chains, the chain uncrossability
condition can be ‘“‘switched off” at first, allowing the
bonds to cross each other freely in the first phase of the
equilibration. Since the global structural features of cross-
ing and noncrossing chains are indistinguishable from each
other [15], this procedure speeds up the computation time
required to fully equilibrate the chains. In our simulations
we monitored the decorrelation of the end-to-end vector
(P(1)) = (R(z) - R(0))/(R?(0)). The chains were permitted
to pass through each other while 1> (P(z)) > 0.3, after
which the uncrossability condition was “switched on”.
The equilibration was carried on until (P(¢)) = 0.05.

It has been found that a bead density of p = 0.5
[16,17,19], which is the value we use in all the simulations
in this Letter, reproduces melt dynamics quite well. At
lower densities, p <0.25, the system exhibits dilute

TABLE 1.

good-solvent behavior ((R?) ~ N'2). Densities up to p =
0.7 [20] have been accessed using the BFM. It may be
noted that while the BFM is not completely ergodic, it has
been found [16] that the fraction of immobile configura-
tions for 3D simulations is negligible and the effect on
ensemble averages is expected to be unimportant.

In the simulations, N, polymer chains, each composed
of N beads, were simulated in a box of size Ly, X Ly X
Ly, With periodic boundary conditions. In this paper, all
the lengths are reported in units of the lattice spacing. One
Monte Carlo step consists of N X N, attempted bead
moves. Simulation parameters and results are summarized
in Table I.

Following the method of [18] to compute the primitive
paths of the equilibrated polymers, we anchor the ends of
all the chains in the system and permit their internal beads
to move. During this phase we switch off intramolecular
excluded volume interactions while preserving chain un-
crossability and intermolecular excluded volume interac-
tions. We ‘‘anneal” all chains in the system simultane-
ously, gradually restricting the tolerance with which moves
that increase the contour length are accepted, according to
the probability, p,..(f) = exp[ —AAL(t/Tmnea)’], Where
AL is the change in chain contour length due to the trial
move, and we use Typpea =~ 10 X TRouse and A = 16, so
that p,.. = 1/e when t/7ypeq = 1/4 for AL = +1. The
results reported in Table I did not change significantly
when 7,,..; was increased and A was varied between
10-20. Most of the moves that obey topological restrictions
are accepted at first, and as the system cools, the contours
of the chains collapse onto their primitive paths.

Finally, to generate a statistical distribution of primitive
paths, we adopt the following ‘‘regrowing” procedure.
From the box containing the primitive paths, we select a
chain at random and delete it. Choosing one of its two ends
randomly, we “grow” a new chain in its place subject to
the constraints of excluded volume (both intramolecular
and intermolecular), chain connectivity, and chain uncross-
ability. We compute its primitive-path length, record it, and

Simulations of N, polymer chains with N beads each were carried out in a cubic simulation box of length Ly, with

periodic boundary conditions. After equilibration the mean contour length L, and mean-squared end-to-end displacement (R?) were

computed. L, is the mean primitive-path length of the equilibrated melt computed using the method described in [18]. L ,,,, /(R =
0.82 for unentangled chains. All distances are in units of lattice spacing.

N Np Lbox LO <R2> Lpp Leqa Lpp/\/@
10 400 20 12.6 = 0.03 20.2 £ 0.56 5.0 =0.08 1.11 £0.02
32 125 20 43.9 =0.12 74.4 =497 11.1 = 0.40 1.29 = 0.06
75 180 30 104.4 = 0.18 180.0 = 10.84 22.7 £0.55 s 1.69 = 0.07
125° 364 45 174.4 = 0.14 337.2 = 14.65 37.9 £0.57 34.5 2.06 £0.05
300 271 55 421.2 £0.24 732.6 £ 36.90 86.5 £ 1.01 76.0 3.20 = 0.09
500 216 60 702.7 = 0.41 1189.2 * 69.67 141.7 = 1.52 1225 411 =0.13

aStandard error of the mean is of the order of 0.0001.

bEguilibrating this system required about 1.5 days and annealing it to obtain L,
10

required about 3 h. Regrowing and deleting the chains

times to compute L., took about two weeks on a single 1 GHz Pentium 3 processor.
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then restore the originally deleted chain. Note that there is
plenty of space to regrow the chain, since the primitive
paths occupy only a small fraction (~20%) of the sites on
the lattice taken by the original chains. We repeated this
process of deleting, regrowing, recording, and restoring
until we amassed good statistics.

Results.—We were able to reproduce all the results
reported by Shaffer [15]. We obtained (R?) ~ (N —
1)1-02%0.03 " \which reflects the Gaussian character of the
chains in the system, and an average characteristic ratio
Co = 1.17, where (R?) = C{b*)(N — 1), (b?) being the
mean-squared bond length. For the BFM, (b?) = 2.04.

In an unentangled melt, the primitive-path length is
simply the end-to-end distance, which has a distribution

W(R) = 4wR2(%>3 exp(— B2R?), @)

where 8% = 1.5/(R?). The distribution ¢ has a maxima at

1/B = 0.82,/(R?). In entangled systems, the primitive path
becomes tortuous and longer as it navigates around topo-

logical obstacles. Thus, the ratio L,,/+/(R?) increases
beyond 0.82 as the number of the entanglements increases
(see Table I).

From the ensemble of primitive paths, we calculate the
mean primitive-path step length a = (R?)/L,,, which cor-
responds to the mean distance between entanglements, and
the average number of bonds per entanglement distance
N, = (N — 1)a*/{R?). Since the BFM is a lattice-based
model, the primitive path is forced to ““snap on” to the
edges of the cells constituting the lattice. The coarse-
grained nature of the lattice implies that values of L, in
continuous space would be somewhat smaller.

As chains get longer and more entangled, a and N,
increase and saturate to constant values (Fig. 1) values.
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FIG. 1. Primitive-path step length a (filled circles, on the left

y axis) and the number of monomers per primitive-path step
N, (filled triangles, on the right y axis), as a function of chain
length.

Using data for N = 125, the mean value of a = 8.59,
which is about five times longer than the Kuhn step
and is reasonable for an entangled melt. Similarly, the
average value of N, = 29.32 is consistent with the value
inferred by Shaffer [15] using a different method of
calculation.

The entropic potential can be derived from the distribu-
tion of primitive-path lengths U(L) = —TS(L) ~
—kpTIny(L). Thus,

U(L) - U(Leq) _ lr‘l//(Leq)
ksT (L)

In Fig. 2 we plot [U(L) — U(L = L¢y)]/Z, obtained
from the simulations via Eq. (3), where Z.q, = L¢y/acq. We
find aeq = (R?)/Leq = 9.72 (see discussion below). Thus,
N = 125, 300, and 500, correspond to Z., = 3.5, 7.9, and
12.5 entanglements, respectively. To assess the viability of
the quadratic power law for the potential we fit the data to
Eq. (1) using v as a fitting parameter. Figure 2 shows that
the entropic potential indeed has a quadratic form, even for
substantially deep fluctuations. The values of v regressed
were 1.49 = 0.08, 1.37 = 0.02, and 1.36 = 0.04, for N =
125, 300, and 500, respectively. This is in fair agreement
with the value of » = 1.5 derived by [1].

Discussion.—As reported in Table I, the average
primitive-path length of the chains, L, is systematically
larger, by about 10%, than L., the average primitive-path
length obtained during the regrowing phase. This occurs
because the regrowing phase is carried out in a matrix of
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FIG. 2. Symbols are simulation results for N = 125 (Z.q = 3.5
entanglements), N = 300 (Z,, = 7.9 entanglements), and N =
500 (Z.q = 12.5 entanglements). Lines are best fits using Eq. (1)
with » as a fitting parameter. The values of v regressed were
1.49 = 0.08, 1.37 £0.02, and 1.36 £ 0.04, for N = 125, 300,
and 500, respectively.
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primitive paths whose slack has been completely roped in.
Thus, the chain being regrown cannot entangle with
unreeled loops as occurs in the original ensemble of chains
before the slack has been reeled in. The discrepancy be-
tween L., and L,, (and therefore, between a.q and a)
brings to light a possible ambiguity in definition and cal-
culation of a primitive path.

We introduced the process of regrowing the chain be-
cause Eq. (1) was originally derived in a fixed matrix of
primitive chains and also to obtain better statistics. For
example, to obtain the simulation data reported in Fig. 2,
we repeated the process of regrowing, 10° times for N =
125 and 300, and 3.1 X 10° times for N = 500. In princi-
ple, we could obtain the same statistics by using ensembles
with a large number (~10°, say) of chains. However, the
process of equilibrating and annealing the whole ensemble
simultaneously is computationally much more expensive
than annealing a randomly selected chain from the frozen
matrix 10° times.

Conclusion.—We employed the BFM to examine the
applicability of the entropic potential that forms the under-
lying basis for rheological theories of branched polymer
melts. Contrary to previous lattice-based calculations, our
simulations confirm the quadratic functionality of Eq, (1),
for both shallow and deep flucutations. The value of the
prefactor v is comparable with the theoretical estimate of
1.5. To determine its value more precisely, off-lattice MD
simulations should be carried out.

This material is based upon work supported by the
National Science Foundation under Grant No. DMR
0305437. Any opinions expressed are those of the authors,
not of the NSF. The authors would like to thank Qiang
Zhou for helpful discussions.
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