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Symmetry Breaking Via Global Bifurcations of Modulated Rotating Waves in Hydrodynamics
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The combined experimental and numerical study finds a complex mechanism of Z2 symmetry breaking
involving global bifurcations for the first time in hydrodynamics. In addition to symmetry breaking via
pitchfork bifurcation, the Z2 symmetry of a rotating wave that occurs in Taylor-Couette flow is broken by
a global saddle-node-infinite-period (SNIP) bifurcation after it has undergone a Neimark-Sacker bifurca-
tion to a Z2-symmetric modulated rotating wave. Unexpected complexity in the bifurcation structure
arises as the curves of cyclic pitchfork, Neimark-Sacker, and SNIP bifurcations are traced towards their
apparent merging point. Instead of symmetry breaking due to a SNIP bifurcation, we find a more complex
mechanism of Z2 symmetry breaking involving nonsymmetric two-tori undergoing saddle-loop homo-
clinic bifurcations and complex dynamics in the vicinity of this global bifurcation.
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Bifurcation theory has long been a very useful tool in the
analysis of complex nonlinear dynamics. Global bifurca-
tions, such as homo- and heteroclinic connections, are
known to play important roles in organizing dynamics
that originate in local bifurcations, and nearby solutions
typically include very-low-frequency states and chaos [1].

Symmetries alter the solution structure near a bifurca-
tion. The simplest symmetry in physical systems is Z2

reflection symmetry. Taylor-Couette flow between two
concentric rotating cylinders provides a canonical physical
system that has been instrumental in developments in non-
linear dynamics and equivariant dynamical systems.
Studies of the influence of end walls [2] opened up new
perspectives into the importance of Z2 symmetry, not only
in Taylor-Couette flow, but in many other equivariant
problems as well. Gluing bifurcations (where a symmetric
limit cycle splits into a pair of Z2-conjugate limit cycles)
have been found in Taylor-Couette flows [3]. Z2 symmetry
breaking via global bifurcations are also thought to be
important in a variety of physical systems [4]. Global
bifurcation dynamics are well known to be an integral
piece of the puzzle for understanding the transition to
turbulence.

In this Letter, we provide a comprehensive comparison
between experiments, numerics, and theory of nonlinear
dynamics involving global bifurcations of two tori in a real
physical system of infinite dimension. We describe the
complex dynamics associated with Z2 symmetry breaking
in Taylor-Couette flow that we have found both experi-
mentally and numerically, including a saddle-node-infi-
nite-period (SNIP) bifurcation of nonsymmetric limit
cycles (rotating wave states) on a symmetric two-torus
(quasiperiodic modulated rotating waves). This curve of
SNIP bifurcations provides a global connection between
the symmetric modulated rotating wave that arises from a
Neimark-Sacker (NSs) bifurcation of a symmetric rotating
wave and the pair of nonsymmetric rotating waves that
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arise from a cyclic pitchfork (CP) bifurcation of the same
symmetric rotating wave. Focusing in on the region where
these three bifurcation curves (SNIP, NSs, and CP) ap-
proach each other, rather than meeting at a point, the
transition between the symmetric and the nonsymmetric
states involves further complex dynamics. The pair of
Z2-conjugate rotating waves suffer Neimark-Sacker
(NSa) bifurcations and the resulting pair of Z2-conjugate
modulated rotating waves simultaneously undergo saddle-
loop homoclinic (SLH) bifurcations resulting in the sym-
metric modulated rotating wave.

The experimental Taylor-Couette setup consists of a
fluid (silicon oil of kinematic viscosity � � 10:2�
0:1 mm2=s) confined between two concentric cylinders.
The outer cylinder and the top and bottom end walls are
held fixed. A phase-locked loop (PLL) circuit controlled
the angular velocity of the inner cylinder, 	, to better than
one part in 10�4 in the short term and 10�7 in the long term
average. The inner cylinder of radius ri � 12:50�
0:01 mm was machined from stainless steel and the outer
cylinder of radius ro � 25:00� 0:01 mm was made from
optically polished glass. The fluid temperature was ther-
mostatically controlled to 21:00� 0:01 �C. The distance
between the end walls, L, is adjustable to within
�0:01 mm. Using the gap d � �ro � ri� as the length
scale, the geometric parameters are the aspect ratio � �
L=d and the radius ratio 
 � ri=ro (fixed at 
 � 0:5). The
dynamic parameter is the Reynolds number Re � 	dri=�.
Laser Doppler velocimetry (LDV) was used for velocity
measurements. See [5] for further details.

The three-dimensional Navier-Stokes equations, nondi-
mensionalized with d and viscous time scale d2=�, are
solved using a Galerkin spectral-projection scheme.
Legendre polynomial bases in the radial and axial direc-
tions, with 48 and 96 modes, respectively, a Fourier basis
with 20 modes in the azimuthal direction, and a time step
of 2� 10�5 were used. See [6] for further details.
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The range of aspect ratios examined here is � 2
	3:00; 3:25
. In this range, for Reynolds numbers Re�
300, a steady axisymmetric flow exists, consisting of four
Taylor cells that form two outgoing jets of angular mo-
mentum erupting from the boundary layer on the inner
cylinder. Figure 1(a) shows the streamlines of this 2-jet
state at Re � 330 and � � 3:0, and Fig. 1(b) is a flow
visualization of this state. For Re * 400, this 2-jet state
undergoes a Hopf bifurcation, spawning a rotating wave
RWs with azimuthal wave number m � 1 [5]. Both SO�2�
rotational symmetry about the axis and Z2 midplane re-
flection symmetry are broken, but RWs retains a spatial
symmetry consisting of a combination of the midplane
reflection with a rotation of 
 radians about the axis (since
it is a rotating wave, the half-period rotation in space is
equivalent to a temporal evolution with T=2, where T is the
precession period) that generates a Z2-symmetry group.
Figures 1(c) and 1(d) show contours of the azimuthal
velocity of RWs in two meridional planes 
 radians apart,
computed for Re � 700 and � � 3:0, illustrating this sym-
metry. The oscillation amplitudes of the two outward jets
are large and they oscillate in phase. RWs is robust, exists,
and is stable for a large parameter range 400< Re< 625.

The local codimension-one bifurcations that a Z2 sym-
metric limit cycle (RWs) can undergo are via a real Floquet
multiplier � � �1 or a pair of complex conjugate Floquet
multipliers � � e�i! crossing the unit circle. The period
doubling bifurcation � � �1 is inhibited due to the pres-
ence of the Z2 symmetry [7]. When Z2 symmetry is broken,
the � � �1 bifurcation is a pitchfork of limit cycles and a
pair of (symmetrically related) nonsymmetric limit cycles
(RWa) are born. In the Neimark-Sacker bifurcation (NSs),
with � � e�i!, a modulated rotating wave (MRWs) is
born; this quasiperiodic solution evolves on a two-torus
T2
s , which is Z2 symmetric, although the individual MRWs

on it are not.
(a) (b) (c) (d)

FIG. 1. (a) Computed streamlines and (b) flow visualization of
the steady axisymmetric 2-jet state at Re � 330, � � 3:0. (c),
(d) Azimuthal velocity contours of RWs at Re � 700, � � 3:0
shown in two meridional planes 
 apart.
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For Re> 640 and increasing � beyond 3.18, RWs suf-
fers a cyclic pitchfork CP spawning a pair of RWa. For �>
3:2, CP is supercritical but becomes subcritical as � !
3:18, spawning a pair of unstable RWa. These RWa

undergo saddle-node bifurcations with the pair of stable
RWa resulting from the CP at larger �. The stable and
unstable manifolds of the RWa are globally connected and
the saddle-node bifurcation takes place on T2

s ; i.e., the
saddle node is a global SNIP bifurcation. Following the
SNIP, quasiperiodic MRWs result. Continuing MRWs to
smaller Re and �, we find that MRWs are spawned at a
Neimark-Sacker bifurcation, NSs, from RWs. The loci of
these three bifurcation curves in �Re;�� space are shown in
Fig. 2; the solid (dotted) curves with filled (open) symbols
were determined numerically (experimentally). The agree-
ment between the two techniques is to within 1% (note that
in the experiment the pitchfork is unfolded due to inherent
small imperfections, and the curve shown is actually the
saddle node from the disconnected branch of the imperfect
pitchfork [2]).

As MRWs approaches the SNIP bifurcation, its modu-
lation period �s becomes infinite, following the typical
1=square-root law associated with saddle nodes. This be-
havior is illustrated in Fig. 3(a). The primary period, T,
remains close to the precession period of RWs from which
it bifurcates, varying by about 10% over the parameter
range considered here.

Figure 4(a) shows phase portraits [8] of MRWs and RWa

[the two Z2-conjugate states are shown in red/green (solid
black)] on either side of the SNIP bifurcation. In order to
illustrate the process of Z2 symmetry breaking via the
SNIP bifurcation, a one-parameter circuit in �Re;�� is
followed (this path is shown in Fig. 2 by the star symbols):
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FIG. 2 (color online). Bifurcation curves in ��;Re� space;
open (filled) symbols are determined experimentally (numeri-
cally). Stars indicate parameter values for Poincaré sections of
the states shown in Fig. 4(b), for ��;Re� values �3:14; 660�,
�3:14; 700�, �3:15; 710�, �3:16; 720�, �3:1705; 720�, �3:171; 720�,
�3:178; 710�, �3:194; 680�, �3:2; 670�, �3:2; 660�, �3:19; 660�,
�3:18; 660�, and �3:16; 660�, clockwise from bottom left.
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FIG. 3. Variation with � of (a) the modulation period of MRWs

near the SNIP bifurcation, and (b) the modulation periods of
MRWs (filled symbols) and MRWa (open symbols) near the
SLH bifurcation, computed for Re as indicated.
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In order to gain further insight into the bifurcation process,
Poincaré sections [9] of the solutions along the path are
shown in Fig. 4(b). The path follows the symmetric rotat-
ing wave RWs (open circles) undergoing a Neimark-
Sacker bifurcation (NSs) to a modulated rotating wave
MRWs (dotted curves). At onset, MRWs has a near circular
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FIG. 4 (color online). (a) Computed phase portraits for MRWs

at Re � 720, � � 3:160 (black dots), and RWa at Re � 720,
� � 3:171 [red/green (solid black) curves for the conjugate
states]. (b) Poincaré sections of states indicated by stars in
Fig. 2. (c), (d) Computed phase portraits for MRWs and
MRWa [Z2-conjugate MRWa in red (gray)].
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Poincaré section which increases in radius as the distance
from the bifurcation curve is increased. As MRWs ap-
proaches the SNIP bifurcation curve, its section deforms
and the iterates on the section accumulate about two op-
posite parts of the section, signaling the critical slowing
down associated with the onset of saddle nodes on the
section. At the SNIP bifurcation, a pair of saddle-node
RWa emerge on T2

s , destroying it. On the other side of
the SNIP bifurcation curve, we only show the Poincaré
sections of the stable cycles, RWa (open diamonds), as
these are the ones we compute directly. As the path is
followed towards the CP curve, the two Z2-conjugate
RWa merge at the pitchfork, and we return to RWs.

Focusing in on the region where the SNIP, NSs, and CP
bifurcation curves approach each other, we find that, rather
than meeting at a point, there is instead a small window in
parameter space where transition between the symmetric
and the nonsymmetric states is accomplished via saddle-
loop homoclinic (SLH) bifurcations. Figures 4(c) and 4(d)
show phase portraits of the solutions found numerically in
such a window. Note, in particular, the pair of Z2-conjugate
modulated rotating waves, MRWa, in Fig. 4(d), which
undergo SLH bifurcations with a pair of Z2-conjugate
saddle RWa (resulting from the subcritical CP).
Following the SLH bifurcation, the Z2-symmetric MRWs

results [Fig. 4(c)]. The modulation periods of MRWs and
MRWa grow unbounded following a log scaling law; see
Fig. 3(b).

The Z2-conjugate MRWa arise from Neimark-Sacker
bifurcations, NSa, of the Z2-conjugate RWa; these bifurca-
tions take place very close to the SLH bifurcations. The
NSa bifurcation curve is indistinguishable from the SLH
bifurcation curve on the scale drawn in Fig. 2. Figure 5(a)
is a zoomed in view of Fig. 2; the NSa bifurcation curve and
the SLH bifurcation curve are separated by �0:03% var-
iations in �.

Details of the bifurcation structure shown in Fig. 5(a)
cannot be resolved with the present experimental appara-
tus. However, evidence is found that the global Z2

symmetry-breaking bifurcation from MRWs differs from
a SNIP for lower Re in the experiments as well. Figure 6
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FIG. 5 (color online). (a) Close-up of the numerical bifurcation
curves shown in Fig. 2. (b) Poincaré sections of MRWs at � �
3:18062 and MRWa at � � 3:18063, both at Re � 690 either
side of the SLH bifurcation.
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FIG. 6 (color online). Experimentally measured time series (in
seconds) of the axial velocity at Re � 684:4 and (a) � � 3:171
(RWa, blue), � � 3:170 (MRWa, red), � � 3:168 (MRWs,
black), (b) � � 3:166 (MRWs), and (c) � � 3:162 (MRWs).

TABLE I. Frequencies (in Hz), of the flow states in Fig. 6.

� Very-Low Frequency (Hz) Precession Frequency (Hz)

3.162 0.0171 4.0039
3.166 0.0134 4.0040
3.168 0.0085 4.0039
3.170 0.0093 4.0035
3.171 � � � 4.0054
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shows experimental time series of low-pass filtered axial
velocity [10] measurements taken at z � 0 and r � ri �
1:5 mm for Re � 684:4 for various � between 3.162 to
3.171. The time series for � � 3:162, 3.166, and 3.168
show the very-low-frequency oscillations of MRWs whose
modulation period grows rapidly as the global bifurcation
is approached. The character of the time series at � �
3:170 is quite different, but there is still a very-low-
frequency oscillation. This state is not space-time Z2 sym-
metric; it is an MRWa. At � � 3:171, the time series is
essentially flat (aside from small amplitude fluctuations
due to experimental noise), and the flow state corresponds
to RWa. Table I provides the underlying precession fre-
quencies of all these states as well as the very-low (modu-
lation) frequencies of the MRW. These results provide
experimental evidence that the SLH scenario found nu-
merically is physically robust, even though the details are
not fully resolved experimentally.

Figure 5(b) shows Poincaré sections of the computed
MRWs and MRWa at Re � 690, following a path in �
across the SLH bifurcation. Notice that the Poincaré sec-
tion of MRWs becomes distorted into an oblique elliptical
shape with the critical slowing down noted earlier occur-
ring at the tips of the ellipse, and that as it approaches the
SLH bifurcation, the minor axis of the ellipse collapses and
the section takes on a figure-8 shape. Inside the small
parameter window being considered, the collapse into the
figure-8 shape of the section occurs before the critical
slowing down at the tips of the section develop saddle
nodes. Crossing the SLH bifurcation curve, the MRWs

section pinches off into two separate sections, correspond-
ing to the Z2-conjugate MRWa.

This phenomenon, which we have been describing as the
SLH bifurcations, is not a single event, but rather a com-
plicated bifurcation process. There is actually an infinite
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series of bifurcations involving homoclinic structures as
the stable and unstable manifolds of the saddle RWa inter-
sect transversally. This implies the existence of very-low-
frequency states appearing and disappearing via saddle-
node bifurcations, on a scale in parameter space which is
not resolvable experimentally or numerically.

Symmetries and symmetry breaking are the most gen-
eral organizing principles in modern physics, successfully
applied in many areas of condensed matter physics includ-
ing hydrodynamics. In this comprehensive comparison
between precise experiments and numerical calculations
of the Navier-Stokes equations, we have studied novel
symmetry breaking and global bifurcations of time-
dependent flows in a canonical hydrodynamic system.
These new results on global bifurcations in hydrodynamics
may provide a further piece in the puzzle for the under-
standing of the transition to turbulence.
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