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Azimuthally Polarized Spatial Dark Solitons: Exact Solutions of Maxwell’s Equations
in a Kerr Medium
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Spatial Kerr solitons, typically associated with the standard paraxial nonlinear Schrödinger equation,
are shown to exist to all nonparaxial orders as exact solutions of Maxwell’s equations in the presence of
the vectorial Kerr effect. More precisely, we prove the existence of azimuthally polarized, spatial, dark
soliton solutions of Maxwell’s equations, while exact linearly polarized �2� 1�D solitons do not exist.
Our ab initio approach predicts the existence of dark solitons up to an upper value of the maximum field
amplitude, corresponding to a minimum soliton width of about one-fourth of the wavelength.
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Bright and dark optical spatial solitons have been and
still are the object of an intense theoretical and experimen-
tal investigation. [1,2] In particular, Kerr solitons have
always represented the theoretical reference model in
view of the simplicity of their analytic description. This
is mainly due to the fact that they are the solution of an
equation, the so-called nonlinear Schrödinger equation
(NLS), which is exactly integrable and also admits, in
particular cases, of simple analytic solutions. The main
limit of the NLS is that it is only able to describe scalar
optical propagation in the paraxial approximation.
Nonparaxial descriptions have been introduced by adopt-
ing suitable asymptotic expansions in the smallness pa-
rameter �=d (where d is the beam width) which result in
improved versions of NLS including both scalar [3–6] and
vectorial [7–10] contributions. Besides eliminating the
unphysical catastrophic collapse associated with standard
NLS [11–13], they show that the transverse Cartesian
components of �2� 1�D propagating beams are mutually
coupled, so that linearly polarized �2� 1�D Kerr solitons
cannot exist. The same nonparaxial approach can also be
used to predict the existence of �1� 1�D bright and dark
solitons [14,15], to the first significant order in �=d.

The standard or improved versions of the NLS are
limited by the underlying approximation scheme and fail
whenever �=d approaches one. The question naturally
arises: Are there solitons to all nonparaxial orders? More
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in general, is it possible to find exact soliton solutions of
Maxwell’s equations?

In this Letter we find, by starting from Maxwell’s equa-
tions, that an exact solution (to all nonparaxial orders)
indeed exists in the form of an azimuthally polarized
dark soliton, i.e.,

E �r; ’; z� � ei
zE�r�ê’; (1)

where r, ’, z are cylindrical coordinates with unit vectors
êr, ê’, êz and 
 is a real number. More precisely, we are
able to prove the existence of azimuthally polarized dark
solitons, i.e., of fields of the kind given in Eq. (1), where
E�r� monotonically ranges from E�0� � 0 to E�1� � E1

and E1 is a given real constant. We numerically evaluate
the soliton shape and its existence curve, our results being
obtained without any approximation, so that the whole
range of possible soliton widths is considered without
any formal distinction between paraxial and nonparaxial
regimes. We note that the existence of azimuthally polar-
ized, circularly symmetric fields of the form E�r; z�ê’, of
which the soliton given in Eq. (1) is a specific case, is due
to the simple symmetry properties of Kerr nonlinearity.

A monochromatic electromagnetic field
Re�E exp��i!t��, Re�B exp��i!t�� propagating in a non-
linear medium obeys Maxwell’s equations

r
E� i!B; r
B��i
!

c2
n2
0E� i!�0Pnl; (2)
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where n0 labels the linear refractive index and Pnl is the
nonlinear polarizability. In the case of nonresonant iso-
tropic media, the vectorial Kerr effect is described by the
polarizability [16]

P nl �
4

3
�0n0n2

�
jEj2E�

1

2
�E �E�E


�
; (3)

n2 being the nonlinear refractive index coefficient. After
eliminating B from Eq. (2) we get

r
r
 E � k2E� k2
4

3

n2

n0

�
jEj2E�

1

2
�E �E�E


�
(4)

where k � n0!=c. Let us consider fields of the form

E �r; ’; z� � E’�r; z�ê’ � Ez�r; z�êz; (5)

describing a circularly symmetric field with vanishing
radial component. Inserting Eq. (5) in Eq. (4), we obtain
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(6)

Internal consistency of the set of Eqs. (6) (three equations
in two unknowns) requires Ez � 0. As a consequence, the
second of Eqs. (6) yields
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�@E’
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�

E’

r

�
� �k2E’ � 2k2

n2

n0
jE’j

2E’:

(7)

We note that circular symmetry and polarization imposed
to the field, together with the symmetry properties of Kerr
effect, have allowed us to reduce Maxwell’s equations to
the single Eq. (7). Equation (7) is conveniently rewritten in
the dimensionless form

@2U

@�2
� 2

@
@�

�
@U
@�

�
U
�

�
� �U � 2�jUj2U; (8)

where � �
���
2

p
kr, � � kz, U �

����������������
jn2j=n0

p
E’, and � �

n2=jn2j. It is important to stress that Eq. (8) has been
derived from Maxwell’s equations without any approxima-
tion and, as a consequence, it describes propagation to any
order of nonparaxiality. If we look for soliton solutions of
the form

U��; �� � ei��u���; (9)
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where [see Eq. (1)] � � 
=k, Eq. (8) becomes

d
d�

�
du
d�

�
u
�

�
�

1

2
��2 � 1�u � �u3: (10)

Both the structure of Eq. (10) and the azimuthal field
polarization dictate u�0� � 0, so that azimuthally polarized
bright solitons do not exist. In order to find dark solitons,
we introduce the further condition

lim
�!1

u��� � u1; (11)

together with the vanishing of all derivatives for � ! 1.
Since focusing media (� � 1, i.e., n2 > 0) are not able to
support dark solitons, we consider hereafter defocusing
media (� � �1, i.e., n2 < 0), so that Eq. (10) reads

d
d�

�
du
d�

�
u
�

�
�

1

2
��2 � 1�u � u3; (12)

which implies, together with the above boundary condition
at infinity,

� � �
������������������
1� 2u2

1

q
: (13)

While positive and negative signs of � respectively refer to
forward and backward travelling solitons [see Eq. (9)],
u��� depends on �2 [see Eq. (10)] and is clearly the
same in the two cases. Equation (13) shows the existence
of an upper threshold for the soliton asymptotic amplitude

u1 <
1���
2

p ; (14)

since, otherwise, � would become imaginary. From an
intuitive point of view, the existence of this threshold is
related to the dominant defocusing effect due to the non-
linearity over the focusing one due to diffraction. If we now
insert Eq. (13) into Eq. (12), we obtain

d
d�

�
du
d�

�
u
�

�
� �u2 � u2

1�u: (15)

We have carried out a numerical integration of Eq. (15)
with boundary conditions u�0� � 0 and u�1� � u1, by
employing a standard shooting-relaxation method for
boundary value problems. The results of our simulations
confirm the existence of dark solitons in the range of field
amplitudes 0 < u1 < 1=

���
2

p
. Different soliton profiles are

reported in Fig. 1. We have investigated, by using Eq. (8),
the stability of our soliton by testing propagation of a
perturbed soliton profile over several diffraction lengths.
This analysis, performed over a number of situations,
furnishes a positive test for the overall robustness of our
solution. In particular, in Fig. 2 we report the evolution of a
numerical soliton corresponding to u1 � 0:2 while, in
Fig. 3, we report a typical numerical simulation for a
boundary condition at � � 0 resulting from the superposi-
tion of the soliton and of a Gaussian perturbation of
amplitude one-tenth of u1.
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FIG. 1. Soliton profile u��� for various values of u1.
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In order to complete our analysis, we now evaluate both
the magnetic field and the Poynting vector. Recalling the
expression of the soliton electric field

E �

��������
n0

jn2j

s
ei�kzu�

���
2

p
kr�ê’; (16)

we obtain, from the first of Eqs. (2) written in cylindrical
coordinates,

B � �

��������
n0

jn2j

s
ei�kz k

!

�
�uêr � i

���
2

p �
du
d�

�
u
�

�
êz

�
��

��
2

p
kr
:

(17)

The magnetic field has a radial component whose shape
coincides with that of the electric field, and a vanishing
azimuthal component, so that E and B are mutually or-
thogonal. With the help of Eqs. (16) and (17), the time
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FIG. 2. Amplitude jUj of the numerical solution of Eq. (8)
with boundary conditions corresponding to the soliton profile
characterized by u1 � 0:2 (see Fig. 1). The longitudinal coor-
dinate ranges from zero to four dimensionless diffraction lengths
� � �2, � being the soliton dimensionless HWHM.
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averaged Poynting vector

S �
1

2�0
Re�E
 B
� (18)

turns out to be given by

S �r� �
�k

2!�0

n0

jn2j
u2�

���
2

p
kr�êz �

�k
2!�0

jEj2êz: (19)

We note that S is parallel to the z axis, consistently with the
shape-invariant nature of solitons. From an analytical point
of view, this corresponds to the �=2 phase difference
between Bz and E’ [see Eqs. (16) and (17)]. As expected,
the Poynting vector is either parallel or antiparallel to êz
according to the sign of �, while its amplitude is propor-
tional to jEj2. The above plane wavelike properties are
consistent with the nondiffractive nature of exact solitons.

It is worthwhile to underline that, in the case of the
azimuthal dark solitons we are considering, the asymptotic
optical intensity I1 � jS�1�j turns out not to be propor-
tional to u2

1. In fact, by using Eqs. (13) and (19), one
obtains

I1�u1� � I0u2
1

������������������
1� 2u2

1

q
(20)

where I0 � kn0=�2!�0jn2j�. Equation (20) shows that the
asymptotic optical intensity is not a monotonically increas-
ing function of the asymptotic field amplitude, but reaches
its maximum threshold value Imax

1 � I0=3
3=2 in correspon-

dence to u1 � 1=
���
3

p
. This is connected to the � depen-

dence of the magnetic field [see Eq. (17)] whose radial part
tends to vanish for u1 ! 1=

���
2

p
. A related and relevant

consequence of Eq. (20) is the existence of two solitons
of different widths for a given asymptotic optical intensity.
The existence curve relating the normalized half width at
half maximum (HWHM) of the soliton optical intensity
profile jS���j to u1 is reported in Fig. 4. In particular, Fig. 4
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FIG. 3. Amplitude jUj of the numerical solution of Eq. (8)
with boundary conditions corresponding to the soliton of Fig. 2
perturbed at � � 0.
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FIG. 4. Existence curve relating the normalized optical inten-
sity HWHM of the soliton to u1.
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shows the existence of a normalized minimum HWHM ’

2:1 (’0:24�) for u1 � 1=
���
2

p
.

It is interesting to examine the behavior of our solution
in the limit of large �. To this end, neglecting in Eq. (15)
the term in u=�, we have

d2u

d�2
� �u2 � u2

1�u; (21)

which formally coincides with the equation describing
one dimensional linearly polarized paraxial dark soli-
tons. Equation (21) admits of the solution u � u1 


tanh��u1=
���
2

p
�, which can be numerically compared with

the exact solution of Eq. (12). The analysis shows that the
hyperbolic tangent solution reproduces the exact one for
large values of �, as expected, while it at most differs by a
factor � 1:2 for small values of �.

Recent findings indicate that radially and azimuthally
polarized laser beams can be efficiently generated [17,18]
and focused to subwavelength diameter [19] in resonator-
like schemes. These, combined with an appropriate non-
linear material, can form a basis for a first experimental
investigation of the existence of the azimuthally polarized
solitons. As an example, if we consider a strongly defocus-
ing nonlinear medium, like sodium vapor at a density of
�1012 atoms=cm3 for which n2 � �4
 10�14 �m=V�2

[20], the upper threshold for the asymptotic optical soliton
intensity Imax

1 is of the order of :5 MW=cm2.
Finally, we wish to note that, for large values of juj2,

other nonlinear contributions may become significant
enough to affect the validity of Eq. (3). However, in our
case, juj2 is limited by the upper value 1=2 [see Eq. (14)]
and these contributions are likely to be negligible. As
an example, we can compare the standard cubic term
juj2u with the quintic one which can be written as
�1=2�!2juj4u (see Ref. [8]), where ! � 1=�kw� (k and w
being the wave number and the beam width). The quintic
term is obviously negligible when �1=2�!2ju1j

2 � 1, i.e.,
assuming w ’ �=4, for ju1j

2 � 5.
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In summary, we have found, to the best of our knowl-
edge, the first exact, two-dimensional, dark spatial Kerr
soliton. This soliton is obtained as a particular solution of
an equation [Eq. (8)], which in turn exactly follows from
Maxwell’s equations, describing circularly symmetric,
azimuthally polarized electric fields. Our ab initio ap-
proach inherently overcomes any approximated scheme
employed to describe paraxial or slightly nonparaxial situ-
ations. In particular, the derived analytical expression of
the soliton propagation constant as a function of the nor-
malized (� ! 1) field amplitude u1 shows that the soliton
does not exist whenever u1 > 1=

���
2

p
. We have also numeri-

cally evaluated the existence curve relating the soliton
width to u1; as a relevant result, this curve shows that
the soliton width attains the minimum possible value of
about �=4 for u1 approaching 1=

���
2

p
.
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