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Apparent Thermalization due to Plasma Instabilities in the Quark-Gluon Plasma
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Hydrodynamical modeling of heavy-ion collisions at RHIC suggests that the quark-gluon plasma
(QGP) ‘‘thermalizes’’ in a remarkably short time scale, about 0:6 fm=c. We argue that this should be
viewed as indicating fast isotropization, but not necessarily complete thermalization, of the nonequilib-
rium QGP. Non-Abelian plasma instabilities can drive local isotropization of an anisotropic QGP on a
time scale which is faster than ordinary perturbative scattering processes. As a result, we argue that
theoretical expectations based on weak-coupling analysis are not necessarily in conflict with hydro-
dynamic modeling of the early part of RHIC collisions, provided one recognizes the key role of non-
Abelian plasma instabilities.
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Hydrodynamic models of Relativistic Heavy-Ion
Collider (RHIC) collisions (based on near-ideal fluids)
provide a good description of a wide range of experimental
data, including radial and elliptic flow measurements, pro-
vided one assumes that the initial partons thermalize in
about 0:6 fm=c [1]. However, theoretical estimates based
on perturbative scattering processes yield expected ther-
malization times in the range of 2:5 fm=c or above [2].
What is the significance of this discrepancy? Are weak-
coupling analyses, which should be valid for asymptoti-
cally high energy densities (and asymptotically large
nuclei), inapplicable at RHIC energies? Perhaps so. Or
have dynamical processes which may be responsible for
this fast apparent thermalization not been correctly identi-
fied? We argue this is the case [3]. Estimates based on
perturbative scattering neglect essential dynamics: the col-
lective behavior associated with non-Abelian plasma in-
stabilities. Such instabilities can produce large nonper-
turbative effects, including apparent thermalization. We
discuss two qualitative lessons which emerge from a
weak-coupling analysis: (i) hydrodynamic behavior does
not require full thermalization—isotropization of parton
momenta in local fluid rest frames suffices, and (ii) plasma
instabilities can drive isotropization at rates which are
parametrically faster than perturbative scattering rates.

Apparent thermalization.—The thermalization time
scale in a quark-gluon plasma, defined as the inverse
relaxation rate of arbitrarily small departures from equilib-
rium, depends on the rate of large-angle scattering (and
near-collinear splitting or joining) processes among quarks
and gluons [4]. Parametrically, this time scale is [5]
�26�g4T ln�2:4=g���1, and for plausible values of RHIC
parameters it is hard to reconcile this time scale with the
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fast apparent thermalization observed in RHIC collisions.
However, this time scale characterizing relaxation of
asymptotically small perturbations is irrelevant to the
question of when hydrodynamic models can be a good
approximation to the dynamics of a nonequilibrium
quark-gluon plasma. The essential assumption of ideal
fluid hydrodynamic models is that the stress tensor, in the
local rest frame at some point in the system, is nearly
diagonal,

Tij � p	ij; (1)

with some equation of state relating the pressure p to the
energy density. But relation (1) is just a statement of
isotropy (in the local fluid rest frame) and is automatically
true if typical excitations have random directions—even if
their energy distribution is far from thermal, or if the
pressure p differs from the equilibrium pressure for a given
energy density. Consequently, understanding when a hy-
drodynamic model can first provide a good approximation
to the plasma dynamics is the same question as under-
standing what dynamics drives isotropization.

Plasma instabilities.—To begin, we summarize known
results concerning gauge-field instabilities in anisotropic
non-Abelian plasmas. Further details may be found in
Refs. [4,6–8].

Let phard denote the characteristic momenta of typical
excitations in a nonequilibrium quark-gluon plasma. (For
example, in the saturation scenario [9], phard equals the
saturation scale Qs at time Q�1

s .) We assume that phard is
sufficiently large that these excitations act like highly
relativistic particles. For time scales short compared to
the mean free time between large-angle scatterings of
typical excitations (and large compared to p�1

hard), the natu-
2-1  2005 The American Physical Society



PRL 94, 072302 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 FEBRUARY 2005
ral framework for describing the dynamics is collisionless
kinetic theory. One splits the degrees of freedom into short
wavelength (or ‘‘hard’’ momentum) excitations which may
be characterized by a phase space distribution function
f�p;x; t� and long wavelength (or ‘‘soft’’) gauge-field
modes which may be regarded as forming a classical field.
For a non-Abelian theory, the resulting Boltzmann-Vlasov
equation has the form [10,11]

�Dt � v 	Dx�f�
1
2gf�E� v� B�i;rpifg � 0: (2)

The corresponding Maxwell equations are

�D�F
���a � j�a � g

Z
p
v�tr�taf�; (3)

with
R
p �

R d3p
�2��3

, v� � �1; p̂�, and ta a color generator.

Any distribution which is homogeneous (in space) and
colorless, combined with vanishing soft gauge field, gives a
static solution to Eqs. (2) and (3). Perturbations about such
solutions obey a linearized equation of motion [obtained
by linearizing Eq. (2) in deviations from the static solution,
solving for 	f, and plugging the result into Eq. (3)] which
(after a space-time Fourier transform) has the form

fK2g�� � K�K� �����K�gA��K� � 0; (4)

where the wave vector K� � �!;k� [12]. The retarded
gauge-field self-energy, generated by hard excitations, is

����K� � g2
Z
p

@f�p�
@pl

�
�v�gl� �

v�v�Kl

v 	 K � i�

�
: (5)

The zero-frequency spatial self-energy �ij�0; k̂� depends
on the direction but not the magnitude of the spatial wave
vector k. If f�p� is anisotropic but parity invariant, then the
self-energy matrix ��0; k̂� has a negative eigenvalue for
some directions of k̂. This implies that there are unstable
solutions to the small fluctuation Eq. (4), i.e., solutions for
which! has a positive imaginary part [4,6]. These are non-
Abelian versions of Weibel instabilities in ordinary plasma
physics [13].

Let ��2 denote the most negative eigenvalue of ��0; k̂�
(for any k̂). Unstable modes have jkj<�. Let � denote
the maximal growth rate of unstable modes. If the hard
particle distribution has O�1� anisotropy [14], then the
maximum unstable wave vector � and the maximum
growth rate � are both comparable to the effective mass
m1 of hard gluons,

�2 � �2 �m2
1 � g2

Z
p

f�p�
jpj

: (6)

If phard is the momentum scale which dominates the inte-
gral (6), and n �

R
p f�p� is the spatial density of hard

excitations, then m1 � g
����������������
n=phard

p
.

To compare to perturbative scattering rates consider, for
example, a system with n � O�p3hard�—the same paramet-
ric relation as in equilibrium, where p� T and n � O�T3�.
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In this case m1, and hence the instability growth rate �
for O�1� (or larger) anisotropy, is O�gphard�. This rate is
parametrically faster than the O�g4phard� rates for large-
angle scattering or near-collinear splitting, or even the
O�g2phard� rate of small-angle scattering [4]. More gener-
ally, for O�1� anisotropy � is faster than the large-angle
scattering rate whenever n� p3hard=g

2 [15]. This inequal-
ity is satisfied parametrically unless there is saturation, and
even in saturation scenarios, it is satisfied for t� Q�1

s [9].
Numerical values depend, of course, on the specific form

of the anisotropic phase space distribution. A simple ex-
ample [16] involving a typical particle energy of 1 GeV,
plasma energy density of 27 GeV=fm3, a phase space
distribution proportional to �p 	 ẑ�4, and "s � 0:5 yields
m1 ’ 740 MeV, and � ’ 280 MeV � �0:7 fm=c��1 for
k ’ 575 MeV. With more extreme anisotropy, the growth
rate � can approach m1 itself [6]. Yet other angular dis-
tributions can give slower growth rates.

Instabilities will grow exponentially until some dynam-
ics comes into play which causes the amplitudes of un-
stable modes to saturate. There are two natural possibilities
for when this might happen [17]. If the unstable modes
with wave numbers of order � grow until the soft gauge
field has an O��=g� amplitude [or the field strength is
O��2=g�], then non-Abelian corrections to the linearized
equation of motion (4) will become important and could
substantially affect the further evolution [18]. In particular,
one might expect these nonlinearities to lead to efficient
transfer of energy from the unstable modes to stable modes
(with a comparable wave number).

Alternatively, if instabilities do not saturate at O��=g�
amplitudes, then they may continue growing until their
amplitudes reach the scale phard=g [and field strengths
are O��phard=g�]. This is the point where the soft gauge
field no longer acts as a small perturbation on the motion of
hard excitations. To see this, note that for this amplitude,
the gauge-field part of a covariant derivative is just as large
as the ordinary derivative when acting on fluctuations with
O�phard� momenta. This is also the point where the energy
density in the soft gauge field becomes an O�1� fraction of
the total energy density, �F��soft�

2 � ��phard=g�
2 � nphard.

There are reasons to believe the second alternative, not
the first, is correct. The generalization to anisotropic plas-
mas of the ‘‘hard thermal loop’’ effective action is [19,20]

Seff � �
Z
d4x

�
1

4
Fa��F

a��

� g2
Z
p

f�p�
jpj

Fa"�

�
v�v�

�v 	D�2

�
ab
Fb"�

�
: (7)

Evaluating this, explicitly, for arbitrary static fields in order
to examine the corresponding effective potential is not
feasible. But in the special case of fields which vary in
only one spatial direction, the effective action reduces to a
simple local form. Let n̂ denote the direction of the wave
vector of the most unstable mode. For gauge fields which
depend only on n̂ 	 x, one finds that the effective potential
2-2
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is [21,22]

V�A�n̂ 	 x�� �
Z
d3x

�
1

4
FaijF

a
ij �

1

2
Aai�ij�0; n̂�Aaj

�
: (8)

When ��0; n̂� has a negative eigenvalue this potential is
unbounded below. The runaway directions of steepest-
descent correspond to Abelian field configurations where
the commutator terms in the field strength Faij vanish. This
suggests that non-Abelian nonlinearities may not cause
growing instabilities to saturate at the scale �=g, pro-
vided the field configuration evolves toward an effec-
tively Abelian form which can continue rolling down the
potential energy landscape. This behavior has been seen
in time-dependent numerical simulations in 1� 1 di-
mensions [22,23]—the instability locally ‘‘Abelianizes’’
and continues growing. It is important to perform full
3� 1-dimensional simulations of the collisionless kinetic
theory (2) and (3) to verify this conclusion. Such simula-
tions are in progress [24]. Here, we assume that growth of
instabilities, beyond the soft scale �=g, will be confirmed.

Isotropization.—Growing instabilities imply that the
stress tensor of the nonequilibrium system will receive
growing contributions from the soft gauge field. The fastest
growing linearized modes tend to decrease the anisotropy
in the total stress tensor [7]. For example, if the anisotropic
hard particle distribution has a prolate form, so that
Thard
zz � Thard

xx ; T
hard
yy , then the wave vectors of the fastest

growing unstable modes lie in the equatorial plane and the
growth of these modes produces a soft gauge-field contri-
bution to the stress tensor which is oblate, Tsoft

xx � Tsoft
yy �

Tsoft
zz . Conversely, for an oblate hard particle distribution,

the fastest growing unstable mode has its wave vector
along the normal direction and generates a prolate contri-
bution to the stress. Hence, even in the linearized regime,
one can see that soft gauge-field instabilities push the
system toward greater isotropy. However, the soft contri-
bution to the stress tensor is small compared to the hard
particle contribution, and the backreaction of the soft
gauge field on the hard particles is a tiny perturbation, as
long as the soft gauge-field amplitude is much less than
O�phard=g�.

But if the soft gauge-field amplitude reaches the scale
phard=g, then it no longer acts as a small perturbation to the
dynamics of hard excitations. Recall that the radius of
curvature of an excitation of momentum p and charge g
in a magnetic field B is R � p=�gB�. If the radius of
curvature is comparable to the magnetic field coherence
length ��1, which means B��p=g, then excitations of
momentum p will undergo O�1� changes in direction dur-
ing traversals of any single coherence-length sized mag-
netic field ‘‘patch’’ [25].

Therefore, if unstable soft gauge-field modes with O���
wave vectors grow until the field strength is O��phard=g�,
then typical excitations will experience O�1� changes in
direction in times of order ��1. Excitations with differing
momenta or colors will receive different deflections from a
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given patch of (non-Abelian) magnetic field. Excitations
traversing different patches of magnetic field [separated by
O���1�] will receive nearly uncorrelated deflections.

The net effect is that a soft gauge field with a non-
perturbative amplitude of order phard=g can effectively
drive isotropization in the distribution of typical hard ex-
citations on a time scale which equals the coherence length
��1 of the soft gauge field. And isotropization of the hard
particle distribution will turn off further growth in the soft
gauge field (since gauge-field instabilities are absent for
isotropic distributions).

As with all instabilities, the time, or number of
e-foldings, required for the soft gauge field to become
large depends on the size of initial ‘‘seed’’ amplitudes in
the relevant unstable modes. The amplitude of the soft
(k��) gauge field generated by a random color charge
distribution of the hard particles can be estimated as A2 �

g2n=�� g
�������������
nphard

p
. This is the smallest the seed field

could be. For densities from n � O�p3hard� up to the den-
sity limit n � O�p3hard=g

2� imposed by saturation, A *

O�g1=2phard�. This is only a factor of g3=2 smaller than
the nonperturbative O�phard=g� amplitude. Therefore, the
number of e-foldings required for instabilities to grow to
this nonperturbative size is only of order ln�1=g�.

Treating logs of g, for simplicity, as O�1�, this means
that if the initial anisotropy is O�1� then the characteristic
growth time needed for unstable modes of the soft gauge
field to reach the nonperturbative amplitude phard=g is only
of order ��1. The resulting soft gauge field then drives
isotropization of the hard particle distribution on a compa-
rable ��1 time scale. Therefore (up to logs of g and factors
of order 1), the time scale for isotropization of the hard
particle distribution is the same as the (inverse) instability
growth rate ��1 [26].

In numerical simulations of ordinary nonrelativistic
plasmas, essentially the same process of instability-driven
isotropization has been observed [27], with the growth of
magnetic instabilities driving large reductions in anisot-
ropy once the magnetic fields reach critical strength.
(These simulations allowed three-dimensional momentum
space variations but assumed translation invariance in one
spatial direction.) Various quark-gluon plasma numerical
simulations [28] have failed to see any sign of this
instability-driven dynamics because they did not allow
full three-dimensional variations.

Although we have focused on the ability of nonpertur-
bative soft gauge fields to generate large changes in direc-
tions of hard excitations, it should be noted that��1 is also
the characteristic time scale forO�1� changes in energies of
hard excitations. This is inevitable, given the fact, noted
earlier, that when the soft gauge field reaches the non-
perturbative amplitude phard=g its energy density is com-
parable to the energy density in the hard excitations. But it
may also be seen directly by noting that chromoelectric
fields generated during the growth of instabilities will be
comparable in size to chromomagnetic fields (since the
2-3
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growth rate of unstable modes is comparable to their wave
numbers for O�1� anisotropy). So chromoelectric fields
will reach the same O��phard=g� size as magnetic
fields—which means that an excitation traveling a distance
��1 will have work of order phard done on it by the soft
gauge field. Of course, this time scale for O�1� changes in
energy may be very different (and much shorter) than the
time scale for true thermalization, as defined by a near-
thermal energy distribution of excitations over a parametri-
cally large dynamic range.

Conclusions.—We have argued that ‘‘early thermaliza-
tion’’ in heavy-ion collisions is more properly interpreted
as evidence of fast isotropization in the distribution of
excitations. And we have argued that non-Abelian plasma
instabilities can drive isotropization at a rate which is
parametrically fast compared to perturbative scattering
rates. Consequently, we see no reason to view the fast onset
of hydrodynamic behavior in RHIC collisions as neces-
sarily in conflict with theoretical expectations based on
weak-coupling analysis of a quark-gluon plasma, provided
one properly accounts for the effects of nonperturbative
plasma instabilities. Further study of the scenario we have
sketched is certainly needed; in particular, full three-
dimensional non-Abelian Boltzmann-Vlasov simulations
with appropriate initial conditions should be conducted.
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