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Precise Quark-Mass Dependence of the Instanton Determinant
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The fermion determinant in an instanton background for a quark field of arbitrary mass is determined
exactly using an efficient numerical method to evaluate the determinant of a partial-wave radial
differential operator. The bare sum over partial waves is divergent but can be renormalized in the minimal
subtraction scheme using the result of WKB analysis of the large partial-wave contribution. Previously,
only a few leading terms in the extreme small and large mass limits were known for the corresponding
effective action. Our approach works for any quark-mass and interpolates smoothly between the analyti-
cally known small and large mass expansions.
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To study instanton-related physics in QCD it is of fun-
damental importance to determine the one-loop tunneling
amplitude given by the Euclidean one-loop effective action
in an instanton background [1]. This quantity involves the
fermion determinant in a nontrivial gauge configuration
and so is also of interest for unquenching effects in dy-
namical quark simulations in lattice QCD [2]. In the 1970s,
’t Hooft [3] calculated analytically this one-loop amplitude
for massless scalar or quark fields, but this exact calcula-
tion is no longer possible if the fields have nonzero mass.
The small mass limit was extended further by Carlitz and
Creamer [4], and by Kwon et al. [5]. This small mass limit
is also closely related to the study of zero modes and
spectra of the Dirac operator, which have been investigated
extensively recently in lattice QCD [6]. In the other ex-
treme, the large mass limit is naturally obtained from the
Schwinger-DeWitt (or the heat-kernel) expansion [7,8]
within the proper-time representation of the effective ac-
tion. For phenomenological applications [1], and also for
the extrapolation of lattice results [9] obtained at unphysi-
cally large quark masses to lower physical masses, it is
important to be able to connect the large and small mass
regimes. In this Letter, we provide the first precise bridge
between these two extremes of small and large mass, by
presenting a method which computes the exact effective
action in an instanton background for any value of the
quark-mass. The resulting mass dependence interpolates
smoothly between the explicitly known results at the op-
posite ends. Our method is new and does not rely on either
a small or a large mass approximation.

Our computational procedure is based on an efficient
way to compute one-dimensional determinants, combined
with the fact that an instanton background is sufficiently
symmetric that the corresponding effective action can be
reduced to a sum over partial waves (see details below).
This bare sum over partial waves is of course divergent,
and the nontrivial part of the calculation is to renormalize
this divergent sum in a physically unambiguous manner.
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We use the minimal subtraction scheme [3,5] and a WKB
analysis [10], which gives the exact counterterms, includ-
ing finite parts. The result is a simple finite expression for
the renormalized one-loop effective action [see (3) below]
which can be evaluated numerically.

Because of a hidden supersymmetry [3,11], the spinor
Dirac operator in an instanton background has the same
spectrum (except for zero modes and an overall multi-
plicity factor of 4) as the corresponding scalar Klein-
Gordon operator. Thus the one-loop effective action of a
Dirac spinor field of mass m (and isospin 1

2 ), �Fren�A;m�, is
directly related to the corresponding scalar effective action
(for a complex scalar of mass m and isospin 1

2 ) by [3,5]:
�Fren�A;m� � � 1

2 ln�m
2=�2� � 2�Sren�A;m�, where A de-

notes the background gauge field, and � the renormaliza-
tion scale. The logarithmic term corresponds to the
existence of a zero mode of the Dirac operator for a single
instanton background. Therefore, it is sufficient to consider
the scalar effective action �Sren�A;m� to learn also about the
corresponding fermion effective action �Fren�A;m�.

As in [3], we consider an SU(2) single instanton of scale
�: A��x� � �	�
a�

ax
=�r
2 � �2��. Rather than the scalar

effective action �Sren�A;m�, it is convenient to consider
~�Sren�m��, a function of m� only, defined by

�Sren�A;m� �
1

6
ln���� � ~�Sren�m��: (1)

The factor 1
6 in (1) is determined by the one-loop � func-

tion. We can then concentrate on the m� dependence of
~�Sren�m��, and we can set the instanton scale ��1. In the
small and large mass limits, respectively, it is known that
~�Sren�m� behaves as [5,8]

~� S
ren�m��

�
��12��

1
2�lnm��� ln2�m2�			 ;

� lnm
6 � 1

75m2�
17

735m4�
232

2835m6�
7916

148225m8�			 ;

(2)

where ��12� ’ 0:145 873, and � ’ 0:5772 . . . is Euler’s con-
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stant. These extreme small and large mass limits (2) are
shown as dashed curves in Fig. 1. There is clearly a
significant gap preventing extrapolation between the small
and large mass limits, and for mass between 0.5 and 1 (in
units of 1=�) neither of these approximations is particu-
larly accurate. In this Letter, we provide a simple numeri-
cal procedure to determine ~�Sren�m�, and hence the fermion
determinant, for any value of the mass m, not just asymp-
totically small or large masses. Our result is

~� S
ren�m� �

� XL
l�0;12;...

�Sl

�
� 2L2 � 4L�

�
1

6
�
m2

2

�
lnL

�

�
127

72
�

1

3
ln2�

m2

2
�
m2

2
ln
m
4

�
; (3)

where L is a large integer. The sum over partial-wave
contributions �Sl is done numerically, as described below,
in Eq. (12). The other terms in (3) are renormalization
terms, computed using minimal subtraction and WKB.
The renormalized effective action ~�Sren�m� in (3) is finite,
converges for large L, and can be computed for any mass
m. Figure 1 shows that our numerical results provide a very
precise interpolation between the extreme small and large
mass limits in (2).

To derive (3), note that the regularized one-loop scalar
effective action has the proper-time representation:

�S��A;m� � �
Z 1

0

ds
s
�e�m

2s � e��2s�

�
Z
d4x trhxje�s��D

2� � e�s��@
2�jxi

� �
Z 1

0

ds
s
�e�m

2s � e��2s�F�s�: (4)

From this, one obtains the renormalized effective action, in
the minimal subtraction scheme [3,5]:
FIG. 1. Plot of our numercial results for ~�Sren�m� from (3),
compared with the analytic extreme small and large mass limits
(dashed curves) from (2). The dots are numerical data points
from (3), and the solid line is a fit through these points.

07200
�Sren�A;m� � lim
�!1

�
�S��A;m� �

1

12
ln
�
�2

�2

��
: (5)

Recall that the massive Klein-Gordon (KG) operator,
�D2 �m2, for scalars of isospin 1

2 in the instanton back-
ground (with scale � � 1) reduces to the radial form [3]

M �l;j� � �
@2

@r2
�

3

r
@
@r

�
4l�l� 1�

r2

�
4�j� l��j� l� 1�

r2 � 1
�

3

�r2 � 1�2
�m2; (6)

where l � 0; 12 ; 1;
3
2 ; . . . ; j � jl� 1

2 j, and with degeneracy
factor d�l;j� � �2l� 1��2j� 1�. Without the instanton
background, the free Klein-Gordon operator, Mfree

�l� , has a
degeneracy factor d�l� � �2l� 1�2. Thus, it is natural [10]
to combine the partial waves �l;j� l� 1

2� and �l� 1
2 ;

j� l�, which have a common degeneracy factor �2l� 1��
�2l� 2�, so that the sum over l and j reduces to a sum over
l. This sum is, however, divergent, and we must define a
consistent regularization and renormalization. To this end,
we use the proper-time regularization in (4), and split the l
sum as follows (here L is a large but finite integer):

�S� �
XL

l�0;1=2;...

�S�;�l� �
X1

l�L��1=2�

�S�;�l�: (7)

In the first sum, which is finite, the cutoff � is irrelevant
and we use a numerical method [described below] to
evaluate the sum. For the second sum, we use a combina-
tion of the WKB approximation, which is good for large l,
and Euler-Maclaurin summation.

To begin, we consider the first sum in (7):

XL
l�0;1=2;...

�Sl �
XL

l�0;1=2;...

�2l� 1��2l� 2�Al;

Al �

�
lndet

�
M�l;l��1=2��

Mfree
�l�

�
� lndet

�
M�l��1=2�;l�

Mfree
�l��1=2��

��
:

(8)

These one-dimensional determinants can be computed
efficiently using the following result [12–14]: Suppose
M1 and M2 are two second order ordinary differential
operators on the interval r 2 �0;1�, with Dirichlet bound-
ary conditions. Then the ratio of the determinants of M1

and M2 is given by

det
�
M1

M2

�
� lim

R!1

�
 1�R�
 2�R�

�
; (9)

where  i�r� (i � 1; 2) satisfies the initial value problem,

M i i�r��0;  i�r�0��0;  0
i�r�0��1: (10)

Since an initial value problem is very simple to solve
numerically, this theorem provides an efficient way to
compute the determinant of an ordinary differential opera-
tor. Note, in particular, that no direct information about the
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FIG. 2. Plot of the l dependence of P�l� � S�l;l��1=2���r �
1� � S�l��1=2�;l��r � 1�, for m � 1. The sum of these two
asymptotic values is O�1l� for large l.
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spectrum (either bound or continuum states, or phase
shifts) is required in order to compute the determinant.

We can simplify the numerical computation further
because for the free KG operator, Mfree

�l� , the solution to

(10) is just the modified Bessel function:  free
�l� �r� �

I2l�1�mr�
r . Since this grows exponentially fast at large r,

this should also be true of the numerical solutions of (10)
for the instanton operators, M�l;j�, in (6). Thus, it is nu-
merically better to consider the equation satisfied by the
ratio (a similar idea was used by Baacke and Lavrelashvili
in their analysis of metastable vacuum decay [15]):
T�l;j��r� �  �l;j��r�= 

free
�l� �r�. In fact, since we are ultimately

interested in the logarithm of the determinant, it is more
convenient (and more numerically stable) to consider
S�l;j� � lnT�l;j�, which satisfies

d2S�l;j�
dr2

�

�dS�l;j�
dr

�
2
�

�
1

r
� 2m

I02l�1�mr�
I2l�1�mr�

�dS�l;j�
dr

�
4�j� l��j� l� 1�

r2 � 1
�

3

�r2 � 1�2
; (11)

where S�l;j��r� satisfies the initial conditions S�l;j��0� � 0
and S0

�l;j��0� � 0. Thus, the first (finite) sum in (7) for the
bare effective action can be evaluated as

XL
l�0;1=2;...

�Sl �
XL

l�0;1=2;...

�2l� 1��2l� 2�Pl; (12)

where Pl � �S�l;l��1=2���r � 1� � S�l��1=2�;l��r � 1��.
The large r values of S�l;l��1=2���r� and S�l��1=2�;l��r� can

be extracted with excellent precision. In fact, the asymp-
totic values of S�l;l��1=2���r� and S�l��1=2�;l��r� very nearly
cancel one another, and for a given mass, as a function of l,
the combination Pl falls off in magnitude like 1

l ; see Fig. 2.
Thus, the sum in (12) will have terms going as L2, L, and
lnL, as well as terms finite and vanishing for large L. We
now show that these potentially divergent terms are exactly
canceled by terms in the second sum in (7).

The second sum in (7) can be analyzed using the Euler-
Maclaurin method [16] as follows. Write

X1
l�L��1=2�

�S�;�l� � �
Z 1

0

ds
s
�e�m

2s � e�!
2s�f�s�; (13)

where it is understood that the corresponding free expres-
sion must be subtracted. Using WKB, which is good for
large l, we can write [10]

f�s� �
Z 1

0
dr
� X1
l�L��1=2�

fl�s; r�
�
; (14)

where for each l, fl�s; r� has a local expansion in terms of
the Langer-modified potential [17]
07200
VLang
�l;j� �

�2l� 1�2

r2
�

4�j� l��j� l� 1�

r2 � 1
�

3

�r2 � 1�2
:

(15)

The first three orders of the WKB approximation for fl
were computed in [10]. The sum over l in (14) can now be
performed using the Euler-Maclaurin expansion [16]:

X1
l�L��1=2�

fl � 2
Z 1

L
dlf�l� �

1

2
f�L� �

1

24
f0�L� � . . . :

(16)

For each order of the WKB expansion, the l dependence is
such that the l integral in (16) can be done exactly. Then in
the large L limit, the r and s integrals in (13) and (14) can
also be done, leading to [18]

X1
l�L��1=2�

�S�;�l� �
1

6
ln�� 2L2 � 4L�

�
1

6
�
m2

2

�
lnL

�

�
127

72
�

1

3
ln2�

m2

2
�
m2

2
ln
m
4

�
: (17)

Only the first two orders of the WKB expansion are re-
quired for this result; all higher orders contribute terms
vanishing in the large L limit. It is important to identify the
physical role of the various terms in (17). The first term is
the expected 1

6 ln� term canceled in (5). The next three
terms give the quadratic, linear, and logarithmic divergen-
ces in L which cancel the corresponding divergences in the
first sum in (7), which were found in our numerical data;
see Fig. 2. It is a highly nontrivial check on the WKB
computation that these terms have the correct coefficients
to cancel these divergences. Combining (12) and (17), we
obtain our result (3).

As an interesting application, our result (3) pro-
vides a very simple analytic computation of ’t Hooft’s
leading small mass result. When m � 0, the numerical
integration can be done exactly and one finds that [18]
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Pl � ln��2l� 1�=�2l� 2��. Then it follows from (3) that
~� S
ren�m � 0� �

XL
l�0;1=2;...

�2l� 1��2l� 2� ln
�
2l� 1

2l� 2

�
� 2L2 � 4L�

1

6
lnL�

127

72
�

1

3
ln2

� �
17

72
�

1

6
ln2�

1

6
� 2% 0��1� �O

�
1

L

�
!
L!1

�
�
1

2

�
� 0:1458 73 . . . ; (18)
which agrees precisely with the leading term in the small
mass limit in (2).

For nonzero values of the mass m we found excellent
convergence computing ~�Sren�m� in (3) with L � 50, com-
bined with Richardson extrapolation [16]. In Fig. 1 these
results are compared to the analytic large and small mass
expansions in (2)—the agreement is remarkable. Thus, our
expression (3) provides a simple and numerically exact
interpolation between the large mass and small mass re-
gimes. This does not change the convergence properties of
the integral over the instanton scale �, but it will change
the actual value of the integral [18].

In conclusion, beyond the instanton problem considered
in this Letter, our approach should provide a practical
numerical scheme for the one-loop effective action in a
broad class of nonabelian background fields.
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