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Quantum Phase Transitions in the Sub-Ohmic Spin-Boson Model:
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The effective theories for many quantum phase transitions can be mapped onto those of classical
transitions. Here we show that the naive mapping fails for the sub-Ohmic spin-boson model which
describes a two-level system coupled to a bosonic bath with power-law spectral density, J�!� / !s. Using
an � expansion we prove that this model has a quantum transition controlled by an interacting fixed point
at small s, and support this by numerical calculations. In contrast, the corresponding classical long-range
Ising model is known to display mean-field transition behavior for 0 < s < 1=2, controlled by a
noninteracting fixed point. The failure of the quantum-classical mapping is argued to arise from the
long-ranged interaction in imaginary time in the quantum model.
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Low-energy theories for certain classes of quantum
phase transitions in clean systems with d spatial dimen-
sions are known to be equivalent to the ones of classical
phase transitions in �d� z� dimensions, where z is the
dynamical exponent of the quantum transition [1]. This
mapping is usually established in a path integral formula-
tion of the effective action for the order parameter, where
imaginary time in the quantum problem takes the role of z
additional space dimensions in the classical counterpart.
The tuning parameter for the phase transition, being the
ratio of certain coupling constants in the quantum problem
(where T is fixed to zero), becomes temperature for the
classical transition. For the quantum Ising model, where
the transverse field can drive the system into a disordered
phase at T � 0, the quantum-classical equivalence in the
scaling limit can be explicitly shown using transfer matrix
techniques [1]. While this formal proof is applicable only
for short-range interactions in the time direction, it is
believed that it also holds for long-range interactions,
which can arise upon integrating out gapless degrees of
freedom coupled to the order parameter. (Counterexamples
are phase transitions in itinerant magnets, where the elimi-
nation of low-energy fermions produces nonanalyticities in
the resulting order parameter field theory [2].) A paradig-
matic example is the spin-boson model [3,4], where an
Ising spin (i.e., a generic two-level system) is coupled to a
bath of harmonic oscillators: eliminating the bath variables
leads to a retarded self-interaction for the local spin degree
of freedom, which decays as 1=
2 in the well-studied case
of Ohmic damping. Interestingly, the same model is ob-
tained as the low-energy limit of the anisotropic Kondo
model which describes a spin-1/2 magnetic impurity
coupled to a gas of conduction electrons [5,6].

The purpose of this Letter is to point out that the naive
quantum-classical mapping can fail for long-ranged inter-
actions in imaginary time even for the simplest case of
�0� 1� dimensions and Ising symmetry. We shall explic-
itly prove this failure for the sub-Ohmic spin-boson model,
05=94(7)=070604(4)$23.00 07060
by showing that the phase transitions in the quantum
problem and in the corresponding classical long-range
Ising model fall in different universality classes.

The spin-boson model is described by the Hamiltonian
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in standard notation. The coupling between spin � and the
bosonic bath with oscillators faig is completely specified
by the bath spectral function

J�!� � �
X

i
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i ��!�!i�; (2)

conveniently parametrized as

J�!� � 2��!1�s
c !s; 0< ! < !c; s >�1; (3)

where the dimensionless parameter � characterizes the
dissipation strength, and !c is a cutoff energy. The value
s � 1 represents the case of Ohmic dissipation, where a
Kosterlitz-Thouless transition separates a delocalized
phase at small � from a localized phase at large �. These
two phases asymptotically correspond to the eigenstates of
�x and �z, respectively.

In the following, we are interested in sub-Ohmic damp-
ing, 0 < s < 1 [7,8]. The standard approach is to integrate
out the bath, leading to an effective interaction

S int �
Z

d
d
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with g�
� / 1=
1�s at long times. Numerical renormaliza-
tion group (NRG) calculations in Refs. [9,10], performed
directly for the sub-Ohmic spin-boson model, have estab-
lished that a second-order quantum transition occurs for all
0 < s < 1. Here we use an analytical renormalization
group (RG) expansion, controlled by the small parameter
s, to establish that the spin-boson transition at small s is
4-1  2005 The American Physical Society



λ
a) c)b)

d)

+

κ0

+ +

FIG. 1. Feynman diagrams occurring in the perturbation the-
ory for the spin-boson model. Full and dashed lines denote the
propagators of the j!xi and j xi impurity states— the two
states are separated by a gap of size �. The wiggly line is the
local bath boson Gloc. (a) Interaction vertex �. (b) Interaction
vertex %0 in the low-energy sector. (c) One-loop renormalization
of %. (d) Diagrams for the local susceptibility �loc.
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governed by an interacting fixed point with strong hyper-
scaling properties. This analytical result is supported by
NRG calculations. In contrast, the transition in the classical
Ising model is known to display mean-field behavior for
0 < s < 1=2 [11,12].

Scaling and critical exponents.—A scaling ansatz for
the impurity part of the free energy takes the form

Fimp � Tf�j�� �cjT
�1=�; �T�y��; (5)

where j�� �cj measures the distance to criticality. The
bias � takes the role of a local field (with scaling exponent
y�), and � is the correlation length exponent which de-
scribes the vanishing of the energy scale T�, above which
quantum critical behavior is observed [1]: T� / j�� �cj

�.
The ansatz (5) assumes the fixed point to be interacting; for
a Gaussian fixed point the scaling function also depends
upon dangerously irrelevant variables.

With the local magnetization Mloc � h�zi �

�@Fimp=@� and the susceptibility �loc � �@2Fimp=�@��2,
we can define critical exponents (see also Ref. [13]):

Mloc�� > �c; T � 0; � � 0� / ��� �c�
�;

�loc�� < �c; T � 0� / ��c � ����;

Mloc�� � �c; T � 0� / j�j1=�;

�loc�� � �c; T� / T�x;

�00loc�� � �c; T � 0; !� / j!j�ysgn�!�:

(6)

The last equation describes the dynamical scaling of �loc.
In the absence of a dangerously irrelevant variable there

are only two independent exponents, e.g., � and y�. The
scaling form (5) yields hyperscaling relations:

� � �
1� x
2x

; 2�� � � �; � � �x;

� �
1� x
1� x

:

(7)

Hyperscaling also implies x � y, which is equivalent to so-
called !=T scaling in the dynamical behavior.

Long-range Ising model.—The classical counterpart of
the spin-boson model (1) is the one-dimensional Ising
model [3,4]

H cl � �
X
hiji

JijS
z
i S

z
j �H SR (8)

with interaction Jij � J=ji� jj1�s. H SR contains an addi-
tional generic short-range interaction which arises from the
transverse field, but is believed to be irrelevant for the
critical behavior [11,12]. As proven by Dyson [14] this
model displays a phase transition for 0 < s � 1. Both
analytical arguments, based on the equivalence to a O(1)
#4 theory [11], and extensive numerical simulations [12]
show that the upper-critical dimension for the
d-dimensional long-range Ising model is d�c � 2s; i.e., in
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d � 1 the transition obeys nontrivial critical behavior for
1=2 < s < 1. In contrast, mean-field behavior obtains for
0 < s < 1=2, with exponents [11,12] � � 1=2, � � 1,
� � 3, � � 1=s, y � s violating hyperscaling.

As the exponent s exclusively determines the power
laws of spectra and correlations in a long-range model
once spatial dimensionality (d � 1) is fixed, s takes the
role of a ‘‘dimension’’; i.e., we refer to s � 1=2 as the
upper-critical ‘‘dimension’’ of the classical Ising chain.

Near s � 1 the phase transition can be analyzed using a
kink-gas representation of the partition function, where the
kinks represent Ising domain walls [15]. This expansion,
controlled by the smallness of the kink fugacity, is done
around the ordered phase of the Ising model, correspond-
ing to the localized fixed point of the spin-boson quantum
problem. For small �1� s� the results obtained via the
perturbative kink-gas RG are consistent with the NRG
data for the spin-boson transition [9], indicating that the
quantum-classical mapping works in the asymptotic vicin-
ity of the localized fixed point.

Spin-boson model: perturbative RG.—We now describe
a novel RG expansion which is performed around the
delocalized fixed point of the spin-boson model. NRG
indicates that the critical fixed point merges with the
delocalized one as s! 0�; thus we expect that the expan-
sion will allow access to the quantum phase transition for
small s. As shown below, the expansion is done about the
lower-critical dimension s � 0; it yields an interacting
fixed point, and mean-field critical behavior for small s
does not obtain. For convenience we assume equal cou-
plings, �i � �, then the energy dependence of J�!� is
contained in the density of states of the oscillator modes
!i, and we have � / �2.

How can a suitable RG expansion be set up? Power
counting about the free-spin fixed point, � � � � 0, gives
the scaling dimensions dim��� � �1� s�=2 and dim��� �
1. Thus, both parameters are strongly relevant for small s.
A better starting point is the delocalized fixed point, cor-
responding to finite �. Eigenstates of the impurity are j!xi
and j xi, with an energy splitting of �. The low-energy
Hilbert space contains the state j!xi only, and interaction
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FIG. 2. Left: NRG data for the order parameter exponent 1=�.
Right: Magnetization exponent 1=� from NRG, together with
the analytical RG result (12) (solid line). The dashed lines are the
mean-field results � � 1=2, � � 3.
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processes with the bath arise in second-order perturbation
theory, proportional to %0 � �2=�. Power counting with
respect to the � � 0 limit now gives dim�%0� � �s; i.e., %0

is marginal at s � 0, indicating that an �-type expansion
for small s is possible.

To lowest order, the RG can be performed within the
low-energy sector, i.e., for the %0 vertex [Fig. 1(b)] and the
propagator for the j!xi state. Consequently, our approach
is valid as long as �� �; !c. We introduce a renormal-
ized coupling % according to %0 � ��s% where � is the
running cutoff, � � !c initially. The one-loop beta func-
tion can be derived using the familiar momentum shell
method, i.e., by successively eliminating high-energy bath
bosons. To one-loop order only the coupling-constant re-
normalization in Fig. 1(c) enters, and we obtain

��%� � �s%� %2: (9)

Besides the stable delocalized fixed point % � 0 this flow
equation displays an infrared unstable fixed point at

%� � s�O�s2�; (10)

which controls the transition between the delocalized and
localized phases. No (dangerously) irrelevant variables are
present in this theory, so we conclude that the critical fixed
point (10) is interacting [16].

We proceed with the calculation of critical exponents.
Expanding the RG beta function around the fixed point
(10) gives the correlation length exponent

1=� � s�O�s2�; (11)

i.e., � diverges as s! 0�, as is characteristic for a lower-
critical dimension. Parenthetically, we note that the RG
structure for s! 1� is also similar to that near a lower-
critical dimension: The line of second-order transitions for
0 < s < 1 terminates in a Kosterlitz-Thouless transition at
s � 1 and is thus bounded by two lower-critical ‘‘dimen-
sions’’—a similar situation was recently found in the
pseudogap Kondo problem, which, however, is in a differ-
ent universality class [17]. As is usual for RG expansions
around a lower-critical dimension the present RG can
capture only one of the two phases (the delocalized one),
whereas runaway flow occurs on the localized side.

The exponents associated with the local field � can be
obtained in straightforward renormalized perturbation the-
ory. To calculate observables, the diagrams are written
down using the original model with couplings � and �
and both j!xi, j xi states. The perturbation theory turns
out to be organized in powers of �2=�, as expected. Some
of the relevant diagrams are displayed in Fig. 1(d), and
details will appear elsewhere. Restricting ourselves to the
lowest-order results for the disordered and quantum critical
regimes we find

� � 1�O�s�; x � y � s�O�s2�;

1=� � 1� 2s�O�s2�:
(12)
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Interestingly, we are able to derive an exact result for the
exponents x, y, employing an argument along the lines of
Refs. [18,19], based on the diagrammatic structure of �loc.
We obtain

x � y � s: (13)

(Notably, y � s was found to be the exact decay exponent
of the critical spin correlations in the long-range Ising
model for all s [11,20].) Hyperscaling yields � �
�1� s�=�1� s�, consistent with the lowest-order result
(12).

As an aside, we note that at s � 0 the bath coupling is
marginally relevant. Therefore the impurity is always lo-
calized as T ! 0, with a localization temperature given by
T� � !c exp���!c=�2�.

Spin-boson model: Numerical results.—We have per-
formed extensive NRG calculations [10] to evaluate the
critical exponents of the spin-boson transition; see
Refs. [9,10] for numerical details [21]. Results are shown
in Figs. 2 and 3: these exponents obey hyperscaling in-
cluding x � y (!=T scaling). They are in excellent agree-
ment with the small-s RG expansion, but at variance with
the exponents of the long-range Ising model: the mean-
field predictions are � � 1=2, � � 3 which are clearly
violated by our results in Fig. 2.

Within error bars the mean-field exponents are realized
at s � 1=2. Further, the one-loop results for � (11) and �
(12) appear to be exact for all 0 < s < 1=2, and logarithmic
corrections to the power laws are observed at s � 1=2. This
suggests that the spin-boson transition does change its
character at s � 1=2, but the critical fixed points for both
0 < s < 1=2 and 1=2 < s < 1 are interacting and obey
hyperscaling (the latter one being equivalent to that of
the classical Ising model).

Discussion.—We have proven that the naive quantum-
classical mapping fails for the sub-Ohmic spin-boson
model: Using a novel RG expansion around the delocalized
fixed point, we have shown that the quantum transition at
0 < s < 1=2 is controlled by an interacting fixed point,
whereas the corresponding classical long-range Ising
model shows mean-field behavior. Thus, the spin-boson
problem for s < 1=2 is equivalent neither to the classical
4-3
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FIG. 3. Left: Numerical data for the correlation length expo-
nent 1=� obtained from NRG, together with the RG result (11).
Right: Susceptibility exponent x from NRG, together with the
RG result (13). Here, the mean-field results coincide with the
lowest-order perturbative ones.
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Ising model nor to the corresponding (quantum or classi-
cal) O(1) #4 theory [12]. In physical terms the inequiva-
lence can be traced back to the different disordered
(delocalized) fixed points in the two situations (expansions
around these fixed points are suitable to access the critical
behavior for small s): In the quantum model the transverse
field fully polarizes the spin in the x direction (which can
be viewed as a ‘‘condensate’’ of spin flips), whereas the
high-temperature limit of the classical Ising model is sim-
ply incoherently disordered.

The inequivalence may come unexpectedly—so where
does the quantum-classical mapping fail? Formal proofs of
the mapping using transfer matrices rely on the short-
ranged character of the interaction [1]. For general inter-
actions a Trotter decomposition of the quantum partition
function is employed where the imaginary axis of length
� � 1=T is divided into N slices of size �
 � �=N,
leading to an Ising chain (8) with N sites. This procedure
is exact when the limits �
! 0 and �!1 are taken in
this order. However, the limit �
! 0 leads to a diverging
near-neighbor coupling in the term H SR of the classical
Ising model (8) [6]. This may, in fact, change the critical
behavior of H cl (8), as a classical model with finite
couplings arises upon taking �! 1 first. In other words,
the quantum and classical problems are only equivalent if
and only if the low-energy limit of H cl is independent of
the order of the two limits �
! 0 and �! 1 [6]. As we
have proven the inequivalence of H SB and H cl (with
finite couplings) we conclude that the two limits cannot
be interchanged for s < 1=2.

A recent paper [22] investigated a SU�N�-symmetric
Bose-Fermi Kondo model in a certain large-N limit and
found a critical fixed point with !=T scaling for all s. The
authors argued that the apparent failure of the quantum-
classical mapping is due to the quantum nature of the
impurity spin. As discussed above, this alone is not suffi-
cient: for short-range interactions in imaginary time the
mapping can be proven to be asymptotically exact [1];
long-range interactions are essential.

Our results suggest that some conclusions drawn in the
past for effectively long-range Ising systems on the basis of
07060
the quantum-classical mapping have to be reexamined.
Further, we envision that our novel � expansion will have
applications for various quantum impurity problems, e.g.,
two-level systems coupled to multiple baths, Bose-Fermi
Kondo models [19,22], and also for quantum dissipative
lattice models [23].
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