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Effect of Phase Noise on Parametric Instabilities
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We report an experimental study on the effect of an external phase noise on the parametric amplification
of surface waves. We observe that both the instability growth rate and the wave amplitude above the
instability onset are decreased in the presence of noise. We show that all the results can be understood with
a deterministic amplitude equation for the wave in which the effect of noise is just to change the forcing
term. All the data for the growth rate (respectively the wave amplitude), obtained for different forcing
amplitudes and different intensities of the noise, can be collapsed on a single curve using this
renormalized forcing in the presence of noise.
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Introduction.—Parametric resonance occurs when the
natural frequency of an oscillator or a wave is modulated
in time or space. Since the early observation of parametri-
cally amplified standing waves on the surface of a verti-
cally vibrated layer of fluid by Faraday [1], it has been
recognized that parametric resonance is involved in most
areas of physics: Bragg scattering of a wave by a spatially
periodic medium or by another wave, energy bands in
solids, ferromagnetic resonance of spin waves, and para-
metric amplifiers or oscillators in electronics or optics
are a few manifestations or applications of parametric
resonance [2].

A problem of both theoretical and practical interest is
how parametric resonance is modified when the pump, i.e.,
the spatial or temporal modulation, is noisy. This has been
considered by Stratonovich in the context of electronic os-
cillators [3]. Experimental studies involve electronic oscil-
lators [4], spin waves in ferrites and antiferromagnets [5],
and parametrically amplified surface waves [6]. Although
only stabilization of parametric instabilities by amplitude
noise has been reported in Refs. [4,5], we have shown in [6]
that the effect of noise is twofold. When the system is
below the deterministic threshold, noise triggers random
bursts of large amplitude oscillations, thus enhancing the
instability. On the other hand, when waves are developed
above the deterministic threshold, noise decreases their
mean amplitude because it detunes the system away from
resonance. In the spatial domain, scattering of a wave by
randomly distributed scatterers instead of periodic ones,
which leads to the well known problem of localization,
can be also understood as an effect of noise on parametric
resonance.

We study here the case when only the phase of the
parametric forcing is noisy. Phase noise is of great interest
because of its importance in various processes: vibratory
excitation of gear systems [7], phase noise transfer in
optical cavities, or limitation of the range of optical com-
munication systems [8]. Parametric devices are phase sen-
sitive [9]. This is used to generate squeezed states of light
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and microwaves [10] or to reduce thermomechanical noise
[11]. However, the effect of phase noise of parametric
pumping does not seem to have been studied in detail. It
has been recognized that frequency modulation [12] or
noise [5] inhibits parametric instabilities in ferromagnetic
resonances. We show here that phase noise inhibits both
the linear instability growth rate and nonlinearly saturated
parametric waves, because it randomly detunes the system.
We emphasize that, contrary to the case of amplitude or
frequency noise, the response of the system displays a good
signal to noise ratio compared to the one of the pump.

Experimental setup and measurement techniques.—The
experimental setup is similar to the one of Ref. [6]. The
fluid container is a plastic vessel of dimensions 95�
95 mm2 filled with mercury up to 4 mm in height. To
prevent contamination of the surface, the fluid container
is closed with a Plexiglas plate and mercury is kept in a
nitrogen atmosphere. Its temperature is controlled by cir-
culating water at 20:2� 0:1 �C. An electromagnetic vi-
bration exciter, driven by a frequency synthesizer, provides
a clean vertical acceleration (horizontal acceleration less
than 1% of the vertical one). The vertical acceleration is
measured by a piezoelectric accelerometer and a charge
amplifier. The surface wave amplitude is measured by two
inductive sensors (eddy-current linear displacement gauge,
Electro 4953 sensors with EMD1053 DC power supply).
Both sensors, 3 mm in diameter, are screwed in the
Plexiglas plate perpendicularly to the fluid surface at rest.
They are put 0.7 mm above the surface. The linear sensing
range of the sensors allows distance measurements from
the sensor head to the fluid surface up to 1.27 mm with a
7:9 V=mm sensitivity. The sensors are located on one of
the diagonals of the container, 40 mm away from each
other about the center. The linear response of these induc-
tive sensors in the case of a wavy liquid metal surface has
been checked in a previous study [13].

A two channel function generator provides the sinusoi-
dal signal with adjustable phase noise, v�t� � V cos�t�
��t�	. We control the standard deviation of ��t� that is a
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pseudorandom Gaussian white noise. The acceleration in
the reference frame of the fluid container is geff � g�
a cos�t���t�	, where g is the acceleration of gravity
and a is proportional to V. Time recordings of the forcing
and of the amplitude of the generated standing waves in the
presence of noise are displayed in Fig. 1. Note that the
signal to noise ratio of the response is rather high compared
to the one of the pump.

Experimental results.—The instability growth rate, mea-
sured for different noise intensities, is displayed in Fig. 2.
We first observe that the instability onset is delayed to
larger values of critical forcing Vc with increasing noise.
The growth rate varies linearly with V 
 Vc for different
noise intensities but its slope decreases with increasing
noise.

The nonlinearly saturated amplitude of the standing
wave generated by the parametric instability is displayed
in Fig. 3 for different noise intensities. We recover that
parametric waves are inhibited by phase noise. The wave
amplitude increases like �V 
 Vc�

1=4 with or without noise
(see the discussion of Fig. 5). This deserves some comment
since a law of the form �V 
 Vc�

1=2 is observed for most
supercritical bifurcations. The �V 
 Vc�

1=4 behavior shows
that the amplitude is saturated by quintic nonlinearities,
thus cubic nonlinearities vanish. This occurs in the vicinity
of tricritical points for which the cubic nonlinearities
change sign and the bifurcation changes from supercritical
to subcritical [14]. One usually needs two control parame-
ters to reach such points. For parametrically amplified
waves, the second parameter, in addition to V, is the fre-
quency detuning 	, i.e., the frequency difference between
the eigenfrequency and half the forcing frequency, as
shown in [15].

The low viscosity of our working fluid (mercury) results
in a coherence length of the surface waves that is so large
that their wave vector is strongly quantized [16]. In our
excitation frequency range, 20<=2�< 30 Hz, the
wavelength of parametrically amplified waves is roughly
10 times smaller that the size of the container, and the
frequency difference between two successive resonance
tongues is about 1 Hz. By tuning the excitation frequency
within a 1 Hz interval, it is easy to work in the vicinity of
the minimum of a resonance tongue. The wave amplitude
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FIG. 1. Time recording of the forcing and of the response:
(left) acceleration (ms
2) of the container with phase noise
(260 �). (right) Amplitude of the surface wave (mm).
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then behaves like �V 
 Vc�
1=4. When the frequency is

detuned from resonance, the response amplitude becomes
time dependent for V only slightly above threshold, proba-
bly due to mode interaction in a system with small dis-
sipation. Thus, no �V 
 Vc�

1=2 can be observed on a
reasonable range of V [17].

Amplitude equation.—It has been shown that the ampli-
tude uk�t�, of each mode with wave number k of the surface
obeys a Mathieu equation in the linear approximation for a
fluid of vanishing viscosity [18],

�u k �!2
k�1� f cos��uk � 0; (1)

where !k is the pulsation of a mode k, f � ak=!2
k repre-

sents the effective gravity modulation in the reference
frame of the fluid container, and � � t���t� with  �
2�!k � 	�. We define a�t� � a cos��t�. In the determinis-
tic situation, the mode of wave number kc, corresponding
to the smallest detuning 	, is the first amplified one.

Using standard techniques [19] close to the instability
onset, f � �F (� � 1), we write 	 � ��, and define a
slow time scale, T � �t corresponding to the instability
growth rate. Expanding v�t; T� � uk�t� in power of

���
�

p
, we

get at leading order

v0�t; T� � A�T�ei�=2�t � A�T�e
i�=2�t; (2)

where A stands for the complex conjugate of A. The solv-
ability condition [19] at the next order gives

_A � 
i�A� i
F
8

hei�iA: (3)

Weak dissipation, � � ��, and nonlinearities can be taken
into account phenomenologically using symmetry argu-
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FIG. 2. Instability growth rate (s
1) as a function of the forcing
amplitude V with a forcing frequency =2� � 23:3 Hz, for
different values of the phase noise (in degrees): ��� 0 �, ���
86:5 �, ��� 173 �, ��� 260 �.
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FIG. 4. Instability growth rate (s
1) as a function of the Fourier
component of the acceleration at pulsation  (=2� �
23:3 Hz), for different values of noise (in degrees): ��� 0 �,
��� 86:5 �, ��� 173 �, ��� 260 �.
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FIG. 3. Amplitude (mm) of the surface wave as a function of
the forcing amplitude V with a forcing frequency =2� �
23:3 Hz, for different values of the phase noise (in degrees):
��� 0 �, ��� 86:5 �, ��� 173 �, ��� 260 �.
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FIG. 5. Fourth power of the amplitude of the surface wave
(mm4) as a function of the Fourier component of the acceleration
at pulsation  (=2� � 23:3 Hz), for different values of noise
(in degrees): ��� 0 �, ��� 86:5 �, ��� 173 �, ��� 260 �.
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ments [14]. For a Gaussian noise, we have hei�i �
e
�h�2i=2�. We thus get the amplitude equation

_A � 
��� i��A� i
F
8

e
�h�2i=2�A
 i�jAj2A; (4)

which describes amplification and nonlinear saturation of a
homogeneous standing wave or of an oscillator in the
presence of parametric forcing with phase noise ��t�.
Note that Eq. (4) can be derived rigorously for a parametric
pendulum. In the case of Faraday waves, additional non-
linear and damping terms may be involved (see [17]).
However, whatever the exact form of the nonlinear terms,
the important point here is that noise modifies the deter-
ministic forcing through the substitution F ! Fe
�h�2i=2�.
We first get that the instability onset given by Fc��� ��������������������
�2 � �2

p
e�h�

2i=2� is delayed by phase noise, as experi-
mentally observed.

Although Eq. (4) formally involves cubic nonlinearities,
for zero detuning, � � 0, the neutral mode is saturated at
quintic order in the vicinity of instability threshold [14].
We get for the nonlinearly saturated amplitude �2jAj4 �
2�e
�h�2i=2��F
 Fc���	. In agreement with experimental
results, jAj4 increases linearly with the forcing amplitude
above instability threshold with a slope that decreases
when the noise is increased.

We observe that the Fourier component f̂�� of the
forcing f�t� at the forcing frequency  is proportional to
fhei�i. In order to check the validity of the amplitude
Eq. (4), we thus plot our experimental results versus
â�� � T
1j

R
T
0 a�t�e


itdtj with T � 1. We observe
that all the data, obtained for both the growth rate and the
nonlinearly saturated amplitude for different noise inten-
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sities, collapse on a single curve (see Figs. 4 and 5), as
predicted by Eq. (4).

Phase noise thus inhibits parametric instabilities by
decreasing the amount of power of the pump available at
parametric resonance. To leading order, this effect is sim-
ply taken into account in Eq. (4) for the amplitude of the
unstable mode by a renormalized forcing f ! fe
�h�2i=2�.
It should also be noted that the response of the system
remains almost free of noise despite the rather noisy forc-
ing (compare the recordings of Fig. 1). This results from
the selective property of parametric amplification. The
spectral part of the forcing detuned by phase noise is not
amplified. All these results may a posteriori look obvious.
A final remark shows that it is not so. If, instead of phase
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noise, one considers the effect of frequency noise, i.e., _� �
���t� in Eq. (1), the main effect of noise is also to
detune the system away from parametric resonance.
However, although we still observe inhibition of the insta-
bility by frequency noise, the response does not remain free
of noise. On the contrary, the fluid surface displays inter-
mittent bursts of oscillations separated by quiet periods
with a flat interface.

An extension of this work could be to consider a space
dependent phase noise as in the coupled oscillator model of
Ref. [20]. Although a space dependent parametric forcing
is not very easy to achieve with surface waves, it is rather
simple to get a noisy distribution of the local frequency of
the waves using a random bottom in the shallow water
limit.
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P. Manneville (Cambridge University Press, Cambridge,
England, 1998), pp. 387–491.

[15] For an experimental observation of the transition from a
subcritical to a supercritical bifurcation as the excitation
frequency of surface waves is varied, see F. Simonelli and
J. P. Gollub, J. Fluid Mech. 199, 471 (1989).

[16] W. S. Edwards and S. Fauve, J. Fluid Mech. 278, 123
(1994).

[17] The fact that quintic terms as well as nonpotential effects
are important for Faraday waves in the small dissipation
limit has been recently shown by F. J. Mancebo and
J. Vega, Physica D (Amsterdam) 197, 346 (2004).

[18] T. B. Benjamin and F. Ursell, Proc. R. Soc. London A 225,
505 (1954).

[19] For a bifurcation in the presence of multiplicative noise,
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