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Multisplitter Interaction for Entanglement Distribution
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In protocols of distributed quantum information processing, a network of bilateral entanglement is a key
resource for efficient communication and computation. We propose a model, efficient both in finite and
infinite Hilbert spaces, that performs entanglement distribution among the elements of a network without
local control. In the establishment of entangled channels, our setup requires only the proper preparation of
a single elected element. We suggest a setup of electromechanical systems to implement our proposal.
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FIG. 1 (color online). (a) The interaction configuration in
Eq. (1). Each edge represents an interaction. (b) Complete
entanglement graph generated by Eq. (1). Solid and dashed
edges represent entanglement.
The role of entanglement in delocalized architectures of
a device for quantum information processing (QIP) has
been investigated under many aspects [1]. Entanglement
between distant sites of a distributed register is a funda-
mental requisite to optimize communication protocols and
perform efficient quantum computation [2]. In this context,
an entanglement distributor creates an entangled network
of the elements of a register that, otherwise, have no direct
reciprocal interaction. The efficiency of the distributor can
be quantified by the number of elements that are entangled
per single use of the distributor or by the amount of
entanglement shared by any two of them. Thus, the choice
of the most appropriate design of the distributor is a
problem-dependent issue with no general recipe. An inter-
esting configuration for this problem is a star-shaped sys-
tem in which an elected element interacts simultaneously
with many other independent subsystems [3].

In this Letter we propose a model that acts as an efficient
entanglement distributor. An important feature of our pro-
posal is that no local control on the dynamics of the
participating systems is required once the interactions are
set. We only need the preengineering of the network and a
proper control of the interaction time. This is an advantage
exploitable in those situations (frequent in solid-state phys-
ics) where single-element addressing is hard or impossible.
The interaction we suggest acts on a multipartite bosonic
network whose evolution can be tracked analytically both
in the discrete and the continuous variable (CV) cases.

Despite our proposal being naturally described using the
quantum optics language, we show that our model is
general enough to find interesting applications in solid-
state physics. We sketch a system of coupled electrome-
chanical oscillators to embody our model. Similar setups
have recently found applications in the entanglement-
transmission problem [4].

Model.—We consider N bosons (or modes) bj (j �
1; ::; N) described by the annihilation (creation) operators
b̂j (b̂yj ) and an additional mode, labeled a, which we call
the root. The interaction configuration is sketched in
Fig. 1(a) and consists of the resonant couplings of the
root to each bj. The satellite elements bj do not mutually
interact. In the interaction picture, we consider the
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Hamiltonian

Ĥ I �
XN
j�1

Gjâ
yb̂j � H:c: � �h � 1�; (1)

with Gj real and time-independent couplings. This is the
celebrated Fano-Anderson resonance model. We note that,
forN � 1, Û��� � e�iĤI� is similar to a beam-splitter (BS)
operation between modes a and b1. Further based on Lie
algebra we find that Û��� can be decomposed as

Û��� � ��N�1
j�1 R̂bj B̂bj�1bj�"j; 0�	B̂bNa�#N�;��=2�

� ��N�1
j�1 R̂bN�j B̂bN�j�1bN�j�"N�j; 0�	; (2)

where #2
k �

Pk
j�1 G

2
j . R̂bj � ei�b̂

y
j b̂j is a �-phase shifter

for mode bj, "j � cos�1�Gj�1=#j�1�, and B̂ab�v;’� �

e�v�â
yb̂ei’�âb̂ye�i’�	 denotes a BS operator. This decomposi-

tion is extremely useful as it shows that the dynamics can
be interpreted as the action of a setup of optical elements
on N � 1 bosons. Equation (2) describes how the root
gains information from bj’s via the interaction B̂bNa as
well as the distribution of any information initially in the
root to the satellites. The form of Eq. (2) reveals that, if bj’s
are all prepared in j0i or thermal states of the same tem-
perature, the transformations prior to B̂bN;a do not contrib-
ute to the entanglement dynamics [5]. By properly setting
"j, the evolution of the network can be made equivalent to
an array of BSs which sequentially superimpose compo-
nent modes. If a is in a superposition of j0i and a coherent
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state, bj’s being in the vacuum state, we generate an �N �

1�-mode GHZ state useful for secret sharing [6]. The entire
Eq. (2) must be considered if we initially prepare one or
more satellite modes in a coherent or a nonclassical state.

The model described by Eq. (1) realizes various inter-
ference patterns in the equivalent all-optical setting allow-
ing for different tasks. For instance, if Gj � G (8 j), ĤI

describes an effective XY coupling suitable for 1 ! N
phase-covariant cloning [7]. As another example, let us
take N � 2 so that Eq. (2) reduces to Û��� �
B̂b2b1�"1; ��B̂b2a�

���
2

p
G�;��=2�B̂b2b1�"1; 0�, with "1 �

�=4. We assume that mode b1 is initially prepared in the
single-excitation state j1ib1 , b2 and a being in the vacuum
(the investigation can be generalized to the case of b1 being
prepared in a coherent state). It is easily seen from our
decomposition that at

���
2

p
G� � � the initial state is trans-

ferred to mode b2 with unit probability (while the maxi-
mum probability of finding the initial state in a is only
1=2), showing a perfect quantum-state transfer from b1 to
b2 via mode a. In fact, when

���
2

p
G� � n� (n � 0; 1; . . . ), it

is interesting to note that our model is equivalent to a
Mach-Zehnder interferometer with a B̂b2a � R̂b2�n�� and
the interference between a� b1 and a� b2 makes the
total transfer of information possible.

Single-excitation case.—Consider a initially prepared
in j1ia, bj’s being in �N

j�1j0ij. The dynamics is captured by
considering a fictitious collective mode of its annihilation
operator ĉ �

PN
j�1 Gjb̂j=#N . Thus, Û���j10 . . . 0iab1...bN �

cos�#N��j10iac � i sin�#N��j01iac, with j1ic �

ĉyj0 . . . 0ib1...bN �
P
j�Gj=#N�j0 . . . 1 . . . 0ib1...bj...bN . This

state can be pictorially described by complete entangle-
ment graphs as those shown in Fig. 1(b). There, solid or
dashed edges represent entanglement.

In the basis fj00i; j01i; j10i; j11igbibj , the reduced den-
sity matrix of the generic pair bi; bj (8 i; j) reads

� ij�

1��G2
iN�G2

jN� 0 0 0

0 G2
jN GiNGjN 0

0 GiNGjN G2
iN 0

0 0 0 0

0
BBB@

1
CCCA; (3)

where i < j and GjN � Gj sin�#N��=#N . The entangle-
ment of this mixed state can be quantified by the concur-
rence CN � maxf0; �1 � �2 � �3 � �4g [8]. Here, �i’s
are the square roots of the eigenvalues (in nonincreasing
order) of �ij��y � �y��

�
ij��y � �y� with ��

ij the complex
conjugate of �ij and �y the y-Pauli matrix. We get CN �

maxf0; 2GiNGjNg. For later purposes, it is also useful to
consider the entanglement measure based on negativity of
partial transposition (NPT) [9]. NPT is a necessary and
sufficient condition for entanglement of any bipartite qubit
state [9]. The corresponding entanglement measure is
defined as NPTN � maxf0;�2 �g, with  � the negative
eigenvalue of �

Tj
ij which is the partial transposition of �ij
07050
with respect to bj. We find NPTN � maxf0; ��1�G2
iN �

G2
jN�

2 � 4G2
iNG

2
jN	

1=2 � �1�G2
iN �G2

jN�g. CN and NPTN
are optimized when #N� � �2k� 1��=2 (k 2 Z). Using
this condition as a constraint in the Lagrange method of
indeterminate multipliers, we find that CN and NPTN are
maximized for the uniform set of couplings Gj � G (8 j).
In this case we get CN;max � 2=N and NPTN;max � f�4�
�N � 2�2	1=2 � �N � 2�g=N. 2=N is the upper bound
for the bipartite entanglement in an N-partite system
[10]. Thus, Eq. (1) is optimal under the point of view
of pairwise entanglement distribution. For equal Gj, the
�ij are all equal and we have j10 . . . 0iab1...bN !

cos�#N��j1; 0 . . . 0iab1...bN � i sin�#N��j0; WNiab1...bN . We
have introduced the N-particle W state jWNib1...bN �

N�1=2P
jj0 . . . 1 . . . 0ib1...bj...bN , which is the state achieving

CN;max[10]. Thus, the maximum concurrence between any
pair of bj’s is found when the root is separable from the rest
of the network. The corresponding graph is obtained by
deleting the dashed edges in Fig. 1(b), the satellite ele-
ments forming complete and permutation-invariant entan-
glement graphs. The system periodically evolves from a
separable state to a configuration where the root is factor-
ized from the rest of the network (which is in jWNib1...bN ).
In between, an (N � 1)-partite entangled state is obtained.

Recently, a configuration of many spin-1=2 systems
analogous to Eq. (1) has been proposed [3]. The one-
excitation case we have considered allows for a compari-
son between the two situations, both achieving CN;max �
2=N. In our model the bosonic nature of the register allows
for this result without local control on the satellite elements
or the root. In Ref. [3], on the other hand, this is obtained
by using an additional magnetic interaction and through
the measurement of the state of the root.

In order to further characterize our entanglement dis-
tributor, we compare jWNib1...bN to the class of cluster
states. These are known to be useful and genuine multi-
partite entangled states [11], inequivalent to jWNi for any
N. While there are always proper local measurements on a
subset of a cluster that allow for the deterministic extrac-
tion of a pure Bell state, this is not the case for a W state.
However, the quantum correlations in a cluster are encoded
in the system as a whole and any pairwise entanglement
(obtained by tracing out the rest of the cluster) is zero. This
is a drawback in those situations where bipartite entangle-
ment is required but the physical system is such that the
realization of a measurement pattern is made difficult by
the problems related to single-element addressing. Finally,
the entanglement of jWNi is persistent as N � 1 projective
measurements are required in order to disentangle the
elements of the register. For the problem we address
here, our analysis shows that Eq. (1) is a suitable and
exploitable model.

CV case .—Considering only the case of a single exci-
tation in the root restricts the possibilities offered by the
1-2
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FIG. 2 (color online). (a) EN against the dimensionless time
g � G� for N � 3 (solid line), N � 4 (dashed line), and N � 5
(dot-dashed line). The squeezing of the initial root state is r �
0:8. (b) Relative entanglement differences �1 (�) and �CV (�)
against N.
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bosonic nature of our register. In Ref. [5] it is shown that a
nonclassical input is a fundamental prerequisite for the
entanglement of the outputs of a beam splitter. The same
is true in our case because of the analogy between a BS and
Eq. (2). On the other hand, necessary and sufficient con-
ditions for the entanglement are known and entanglement
can be quantitatively determined only for the class of two-
mode CV Gaussian states [12,13]. In virtue of these con-
siderations and because of the Gaussian-preserving nature
of the linear operations in (2), only Gaussian states will be
considered here.

A powerful tool in the analysis ofN-mode CV systems is
given by the variance matrix V, defined (after unitary
displacements) as V�$ � hfx̂�; x̂$gi ��;$ � 1; . . . ; N�.
Here, x̂ � �q̂1; p̂1; . . . ; q̂N; p̂N�T is the vector of the quad-
ratures. A Gaussian state is fully characterized by the
knowledge of just the first and second moments of x̂ and,
in order to characterize the state of our N � 1 modes, we
need to find the variance matrix of their joint state after
Û���. In phase space, the action of Û��� is such that V0 �
T TVT becomes the new variance matrix. Here, T is the
2�N � 1� � 2�N � 1� unitary matrix [found using Eq. (2)]

T �

cos�#N��12 A1�y A2�y � � � AN�y

A1�y D1112 D1212 � � � D1N12

..

.
� � � � � � . .

. ..
.

AN�y DN112 DN212 � � � DNN12

0
BBBB@

1
CCCCA;

(4)

where 12 is the 2� 2 identity matrix, An � �iGnN and
Dnm � +nm � �GnGm� cos�#N�� � 1�=#2

N	. +nm denotes
the Kronecker symbol.

For simplicity, we take Gj � G (8 j), bj’s being in the
vacuum state (variance matrix Vb1...bN � �N

j�112bj). The
root is prepared in a squeezed state (squeezing parameter r)
which is the most natural nonclassical Gaussian state [5].
The initial variance matrix of the system is Va � Vb1...bN ,
with Va � e�r�z the variance matrix of a and �z is the
z-Pauli matrix. By tracing all the modes but bi and bj we
get

V 0
bibj

�
LN CN

CN LN


 �
: (5)

Here, LN � diag�nN;mN�, CN � diag�cN; dN�, with nN �
1� cN , mN � 1� dN , cN � �erdN � �er �
1�sin2�#N��=N. No dependence on the indices i; j exists
so that Eq. (5) is the same for any pair. V0

bibj
has a form

which allows us to quantify the bipartite entanglement.
Indeed, for a variance matrix as Eq. (5), the NPT entangle-
ment measure is given by EN � maxf0; �+1+2�

�1 � 1g
with +1 � nN � jcNj and +2 � mN � jdNj [13]. We have

E N � max
�
0;

2�1� e�r�sin2�#N��

N � 2�1� e�r�sin2�#N��


; (7)
07050
which is plotted in Fig. 2(a) against the effective coupling
g � G�. EN diminishes asN increases and, for fixed values
of r, is maximized at #N� � �2k� 1��=2 (k 2 Z). In
Fig. 2(a) only EN�3 is shown as N � 2 requires some
comments. For this particular case, by generalizing the
results of the analysis in Refs. [5,14], we expect the
evolved state of modes b1; b2 to be locally equivalent to
a two-mode squeezed vacuum. This result is crucially
dependent on the fact that, from Eq. (2) for N � 2 and
#2� � �=2, the interaction between the satellite modes is
an effective 50:50 BS. This allows us to decompose the
variance matrix of the resulting two-mode state as V0

b1b2
�

O��r4 �Sb1b2�
r
4�O�

�r
4 �. Here O��r4 � � �N

j�1Sbj�
�r
4 �, with Sbj

the single-mode squeezing transformation (which does
not modify the entanglement structure) and Sb1b2�

r
4� the

variance matrix of a two-mode squeezed vacuum [13]. The
state is pure, which implies the separability of a from b1 �
b2. By studying the purity P b1b2 � �detV0

b1b2
	�1=2 [13], we

find that its period is one-half the period of E2. That is, the
b1 � b2 state is pure not only when E2 is maximum [at
�odd � �2k� 1��=�2

���
2

p
G�] but also at �even � k�=�

���
2

p
G�,

which corresponds to E2 � 0. By using the biseparability
condition of a boson from a group of N others [15], we
have also checked that at �even no entanglement is found
between a and b1 � b2. The state is fully separable.

By enlarging the network to N � 3, we notice that the
first interaction in Eq. (2) between two satellite modes is a
BS with "N�1 � 1=

����
N

p
, which is no longer a 50:50 BS.

This stops the possibility of getting a state locally equiva-
lent to a two-mode squeezed state [16] and the structure of
the multimode entangled state becomes much more com-
plicated than the simple case of N � 2. In particular, the
state of any pair �bi; bj� is pure just at geven but no longer
when EN is maximum. Thus, quantum correlations are
shared between bj’s at �odd � �2k� 1��=�2

����
N

p
G� but

not between the root and them. The entanglement configu-
ration alternates between a fully separable state and a
many-body entangled state of just bj’s, passing by a con-
figuration in which entanglement is shared with a. The
picture given by the graphs in Fig. 1(b) is still valid.
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We now look at the effect of increasing N on the
properties on the entanglement distribution. We consider
the quantities �1 � 1� �NPTN�1;max=NPTN;max� and
�CV � 1� �EN�1;max=EN;max�, which measure the relative
loss in pairwise entanglement if the network is enlarged by
one element. Figure 2(b) shows that at a fixed r, �1 and
�CV decrease with N (3 � N � 20). The distribution pro-
cess is only weakly affected and the entanglement is still
spread through the network. In passing, it is interesting to
stress the qualitative robustness of the distributed entan-
glement in the CV case as compared to the discrete one, an
issue which, in a different context, has also been noticed in
[17].

Possible setups.—We briefly mention that, to embody
Eq. (1), we can use the interaction of a linearly polarized
optical bus with N ensembles of cold atoms (confined in
vapor cells), providing the Hamiltonian Ĥle �

3p̂ph
PN
i�1 p̂ei (3 is a coupling rate). Here, p̂ph (p̂ei) is

the momentum operator of the bus (ith atomic ensemble)
whose wavelength is assumed to be much larger than the
dimensions of the ensembles and their separations [18].
Ĥle holds within the Stokes-vector formalism for the bus
and the Holstein-Primakoff transformation mapping col-
lective states of an ensemble into a fictitious boson. By
discarding rapidly oscillating terms, Ĥle ! ĤI.

Stimulating opportunities come from micromechanical
and nanoelectromechanical systems (NEMS), i.e., electri-
cally controlled mechanical oscillators (or cantilevers)
whose dimensions are in the range from 10�9 to 10�6 m.
Doubly clamped cantilevers with fundamental mode fre-
quency in the range of �107–109� Hz have been fabricated
and mutually coupled [19]. They are useful to study
Heisenberg-limited measurements [20] and entanglement
[4,21]. There are theoretical proposals for ground cooling
and squeezing of NEMS mode [22]. The preparation of
phonon-number states and the tomography of a vibrational
mode have also been addressed [22].

We consider N classical oscillators coupled via spring
forces to a central one, the analog of our root. Within
Hooke’s law, the energy of the system is H � �!=2��
�q2a � p2

a� � �!=2�
P
j�q

2
j � p2

j �Kj�qj � qa�
2	, where

the Kj’s are the coupling factors, �qj; pj� are proper
canonical variables, and ! is the frequency of the oscil-
lators (equal for all). Each Kj is controlled via voltage
biases between the cantilevers. Each bias creates a poten-
tial that changes with the capacitance between two oscil-
lators. Equation (1) is then found in a second quantization
picture and within the rotating wave approximation (used
for Ki ’ 0:1!). The oscillators can be built via photoli-
thography of gold on silicon substrates [19]. In our case,
planar grids of a few cantilevers face each other in pairs,
surrounding the root. The coupling of the cantilevers to the
phononic modes of the substrate is the main source of
decoherence. However, oscillators with quality factorsQ ’
104 and ! ’ 10 MHz (coherence times ’ 1 ms) allow now
07050
for a good number of coherent operations. The reconstruc-
tion of V0

bibj
is challenging here. However, a single-

electron transistor (SET) capacitively coupled to the canti-
levers can be used [21]. Exploiting the changes of the
coupling capacitances (which depend on the instantaneous
position of the oscillators), a SET acts as a displacement-
to-current transducer with displacement sensitivity
’ 10�16 m=

������
Hz

p
. Stroboscopic techniques to infer V0

bibj

could then be used [4].
Remarks.—We have characterized a many-body inter-

action that, through just global interaction with a seeding
system, distributes entanglement in a network of local
processors. The dynamics is described by linear operations
and the model is flexible enough to allow for different
interference patterns by preengineering the couplings and
the initial state. We have shown how symmetric bipartite
entangled states are generated both in the discrete and the
CV cases. To embody our model, we have described a
setup of coupled cantilevers that offers nice perspectives
in the study of entanglement distributors for QIP.
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