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Anisotropic Diamagnetic Response in Type-II Superconductors
with Gap and Fermi-Surface Anisotropies
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The effects of anisotropic gap structures on a diamagnetic response are investigated in order to
demonstrate that the field-angle-resolved magnetization [M; (y)] measurement can be used as a spectro-
scopic method to detect gap structures. Our microscopic calculation based on the quasiclassical
Eilenberger formalism reveals that M, (y) in a superconductor with a fourfold gap displays a fourfold
oscillation reflecting the gap and Fermi-surface anisotropies, and the sign of this oscillation changes at a
field between H.; and H,,. As a prototype of unconventional superconductors, magnetization data for

borocarbides are also discussed.
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A precise determination of the node position or gap
structure is of fundamental importance in superconductiv-
ity study in general, especially for ever-growing so-called
unconventional superconductors, since it is indispensable
in identifying the pairing mechanism for a material of
interest. There are only a few established methods for the
precise determination of gap structures; angle-resolved
specific heat and thermal conductivity measurements are
notable ones [1-5]. Nevertheless, to reinforce the conclu-
sion, more such spectroscopic experiments based on bulk
quantities are desirable [6]. As Takanaka [7] suggested
within the Ginzburg-Landau (GL) theory, a diamagnetic
response is a strong candidate if combined with an analysis
of the basal plane magnetization anisotropies. Needless to
say, a diamagnetic response from a superconductor is a
hallmark of rigidity of the macroscopic wave function,
containing a wealth of microscopic information, and it is
a routine work to measure magnetizations to check if a
material of interest is a superconductor or not. Since we are
realizing [5] that field-angle dependences of various physi-
cal quantities such as specific heat or thermal conductivity
should reflect low-lying quasiparticles around the vortex
core, it is also expected that the magnetization contains the
same kind of information.

Among a vast amount of type-II superconductors, non-
magnetic borocarbides RNi,B,C (R = Lu, Y) are consid-
ered to be typical examples of unconventional ones in the
following sense: (i) Lots of experiments have demonstrated
the existence of gap nodes (or gap minima) [1,2,8—10];
(ii) the normal and mixed states are not exposed to the
strong fluctuations such as in cuprates; (iii) there exist
detailed magnetization measurements [11,12]. To establish
a spectroscopic method based on the magnetization mea-
surements, it is thus important to understand the aniso-
tropic diamagnetic response in these materials and clarify
its relation to the gap structure.

In the works by Civale et al. [11] and Kogan et al. [12],
basal plane magnetizations were measured as a function of
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the angle y (see Fig. 1) between the applied field and the
crystal axis, and it was found that the fourfold oscillation of
the magnetization showed a sign reversal with decreasing
the field (or temperature). Kogan et al. [12] demonstrated
that these behaviors can be reproduced within a nonlocal
London theory without quoting anisotropy effects of the
gap function. However, at least when discussing anisotropy
effects in a vortex state, the validity of the London descrip-
tion in high fields is quite unclear since the framework is
appropriate only in a field region H < H,. If we aim to
clarify whether the observed phenomena are generic ones
or not, we need a theoretical approach which can correctly
describe the anisotropy of H, and the core effects.

The purpose of this Letter is twofold. The first one is to
clarify the effects of gap structures on the anisotropic
diamagnetic response based on the quasiclassical
Eilenberger formalism. The second one is to apply our
analysis to the prototype materials, i.e., nonmagnetic bor-
ocarbides, and present a microscopic description of the
observed mysterious sign reversal of the M; () oscillation
[11,12]. Our microscopic treatment covers, of course, both
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FIG. 1. The coordinates (x, y, z) and the crystal axes (a, b, ¢).
The induction B is rotated from the a axis by an angle y.
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GL theory and London theory, since the former is derived
from the Eilenberger formalism through an expansion
about the pair field, while the latter is derived by using a
phase only (London) approximation. Indeed, our numeri-
cal solution at finite temperatures well reproduces both GL
behavior (M « H., — B) near H,, and London behavior
[M <« In(H_,/B)] in lower fields.

Let us first explain our numerical procedure. We start
with the following Eilenberger equation [13] (kg = h =

1):
f(&np, 1) = 2e, + iv- )71 2¢(e,, p, Wy A(r)), (1)

fle,pr), fi(e,pr)=fe, —pr) and

g(e,, pr) = \/1 — f(ep.¥)fT(g,, p,r) are the Eilen-
berger’s Green’s functions. Here &, = 27T(n + 1/2) is a
fermionic Matsubara frequency, v is a Fermi velocity, Il =
—iV + 27/ dy)A is a gauge invariant gradient, T, is a
transition temperature at a zero field, and @, is the flux
quantum. The gap function is expressed as Ap(r) =
wpA(r) where wy, is the pairing function with relative
momentum p of the Cooper pair, and A(r) is the order
parameter with center of mass coordinate r. Throughout
this Letter we treat extreme type-II superconductors with
large GL parameter « >> 1 (in borocarbide superconduc-
tors k = 10), so that the vector potential is approximated
by A = —Bzy where B = BX is the induction (see Fig. 1).
This is indeed a good approximation in the high-« case
since the correction term is of order O(1/«?). To solve
Eq. (1), we adopt an approximation similar to that used by
Pesch [14],

where

f=2gw,(2e, + iv-TD)~'A. (2)

The physics behind this approximation is that the spatial
variation of f related to the phase modulation of A is much
larger than the spatial variation of g describing the ampli-
tude fluctuation. It is worth noting that we do not replace g
in the above equation by its spatial average, as Pesch has
done, in order to ensure that the correct expressions for the
nonlocal GL free energy F/V given in Ref. [15] are
reproduced up to the quartic term. Besides the above
mentioned justification near H,,, the applicability to lower
fields is improved by requiring the self-consistency among
L f . and g. Furthermore, our scheme can be valid in an
anisotropic case by including the contribution of higher
Landau level components to A:

NmBX
A=A Z dyiy, (3)
N=0
i Hy(z +vm) _ i
= Cm—e (z+vm)?/2 ivmy (4)
N m:Z—oo V2V NI
where AO = 1764TC, rg = \/¢0/27TB, Cm =

(vrg/Jme ™™ Hy is the Nth Hermite polynomial,

and the lengths are measured in units of rz. The real
constants ¢ and v specify the configuration of a vortex
lattice. Since the difference of a vortex lattice configuration
is considered to be irrelevant to the quantity in question, we

set in this Letter / = 1/2 and v = +/ V37, the value for a
triangular lattice. Substituting the above expression into
Eq. (2) and using a parameter representation (2g, + iv -
m-'= [y dpe= et vIp e have

00 Nmax
f=2gw, f dpe*ZSnﬂ<A0 D aNdN>. 5)
0 N=0
Here the expression for ay = e *V1ly, is given by

_ Hy(z + vm —Re A)
o ;Cm V2NNT (6)

X e~ AP=A0)/4 p=(ztvm=1)?/2=ivmy

where A = (v, + iv,)p/rp. Atlong last we have a solution
for f, on condition that we have the correct {d} values. To
determine {dy} we use the following self-consistent equa-
tion projected onto each Landau level:

T 27T —« ——F——
[m(i) 2Ty e 1}1N =%, S @
where the overbar denotes the spatial average, and the
Fermi surface (FS) average (- - -) satisfies a normalization
condition (1) = 1; the definition is given by Eq. (9) below.
Our numerical procedure is as follows: Input initial values
for {dy}, f, f1, and g. Next use Eq. (5) to obtain the new f
(and fT, g). Then iterate Eq. (7) to renew the {dy} values,
and return to Eq. (5). In order to check the reliability of our
numerical procedure, we initially treated a two-
dimensional case and calculated field dependences of
each {dy} at T/T, = 0.5. The obtained result was quite
similar to the previous work based on the Landau level
expansion of the GL equation [Figure 2(b) of Ref. [16] ]. In
the following calculation we use N,,, = 6.

The magnetization 47M = B — H is obtained from the
relation H = 47 Vg (F/V). As for the longitudinal compo-
nent M, (|| H), which we focus on in this Letter, Klein
et al. [17] obtained a more convenient formula extending
the virial theorem derived by Doria et al. [18]:

272N(0) 28[f 1 (wpA) + f(wpA)*]
—47TML:—B T’;)< p1+g P
e, (19 g)>, )

where in the above equation we approximately set B - H =
BH as in Ref. [12].

Now let us assume an isotropic FS to focus only on the
role of the gap anisotropy. In this case the Fermi momen-
tum can be written as Pp = mvyf, where 7=
(sinf cos ¢, sinf sing, cosh), v, is the Fermi velocity in
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the isotropic case, and m is the effective mass of the
quasiparticle. As a model for an anisotropic gap function,
wp = /1 — acosd(¢ + x)/(1 — acosd(¢ + x)) is used
where y is the field angle measured from the crystal a axis,
and ¢ is the azimuthal angle measured from the x axis.
Thus « denotes the degree of the gap anisotropy with a =
1 being the nodal case. Figure 2 shows the field depen-
dence of the longitudinal magnetization M; for B || node
(filled circles) and B || antinode (open circles) at T =
0.6T ... From the inset both the GL and the London behav-
iors are clearly seen. Although the difference of M be-
tween the two field orientations is rather small, we can find
that the M, at B = H_, is larger for the B || node, but with
lowering the field this tendency is reversed at a field B*. In
Fig. 3(a), the corresponding field-angle dependences of
M;(x) are plotted for several inductions. It should be
emphasized here that the gap anisotropy alone can cause
a sign reversal of the M, () oscillation. The result with

isotropic FS can be summarized as follows: MZInode >

MBlantinode 5y hioher fields, and pEllntinede > pyBlnode 5,
lower fields.

Next we discuss the magnetization experiments [11,12]
for borocarbides. The observed data are incompatible with
the above conclusion once we recall the experimental
suggestion that the nodes exist along the [100] and [010]
directions [1,2]. The discrepancy is considered to stem
from the unusually large FS anisotropy possessing partial
nesting [19] in these materials. As a model having such an
anisotropic FS, we introduce a fourfold anisotropic disper-

sion €, =35{(p? + pII1 + Beosd(¢p + Y)] + pH} =L
where (6, ¢) = /1 + Bsin’> cos4(¢p + x). Thus B de-
notes the degree of the FS anisotropy. The resultant Fermi
momentum can be written as p = (mv,y/o)?. The Fermi
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FIG. 2. Logarithmic field dependence of longitudinal magne-
tization M; at T/T, = 0.6 for B || node (filled circles) and B ||
antinode (open circles). The used anisotropy parameters are a =
1 and B=0. Hyy, = 1.037D/27E3 (&) = vo/27T,) is the
orbital limiting field in the isotropic case. Inset: Field depen-
dence of M3 =[M;(x =0) + M (y = 7/4)]/2 for the same
parameters.

velocity v = V€, can be expressed as v = v,/ + 'Ugé +
vy &, where 6 = (cos cose, cosf sing, — cosf) and ¢ =
(— sing, cosg, 0). Here each component of v is given by
v, = vy0, vy = 2vy(B/0)sin’f cosf cosd(¢ + x), and
vy = —2vo(B/0)sin’6 sind(¢ + ). Finally, the area ele-
ment dS of the FS divided by |v| is given by dS/|v| =
(mvy/0?)d(cosf)d¢. Then our definition of the FS aver-
age is given by

_ Jes(dSAy/IV)
fps(ds/lvl) )

A band structure calculation for LuNi,B,C suggests a
rough estimate 8 =0.4 so as to reproduce the ratio
(v$)/{(v2v?) = 0.128 [20] within our model.

Starting from the isotropic FS case (8 = 0) and increas-
ing the S value, the oscillation pattern seen in Fig. 3(a) first
tends to diminish, and, when the 8 value exceeds about 0.1,
the sign of the M, (y)-oscillation pattern is completely
reversed. This is shown in Fig. 3(b), and the oscillation
behavior well coincides with the results of Refs. [11,12].
Worth noting is that &8 > 0 in our model corresponds to
the competing anisotropy case in the sense of Ref. [21],
where the observed configuration [22] of the vortex lattice
in B || ¢ is properly explained by the competition between
gap and FS anisotropies. Note also that the main conclu-
sion here is not changed by the nodal topology and effec-
tive dimensionality of a material, though the oscillation
amplitude is quantitatively enhanced for a quasi-two-
dimensional material.

We show in Fig. 4 the field dependence of the magne-
tization oscillation amplitude SM; = M;(xy =
7/4) — M (x = 0) at T/T, = 0.6, which is to be com-
pared with the experiments (Fig. 3 of Ref. [11] and Fig. 5
of Ref. [23]). The characteristic behavior that 6M; is a
slowly increasing function of the field except for a peak
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FIG. 3. Field-angle dependences of  M;(x) for
(@ a=1,B=0and (b) a=1,8=04 at T/T, = 0.6 for
several inductions. The data at different B are vertically shifted.
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structure slightly below H ., is well reproduced. Finally, the
inset of Fig. 4 shows the oscillation sign reversal field B* in
the B-T phase diagram for « = 1 and 8 = 0.4. The B*(T)
is a decreasing function of the temperature, and this is
consistent with the experimental finding of Ref. [24]. The
B*(T) could be a diagnostic quantity to characterize the
gap function and the FS anisotropy.

The physics behind the phenomena is explained as
follows: Near H., where the GL theory can be applied,
the anisotropy of the longitudinal magnetization 47wM; =~
(B — H_,)/2.32k? comes from that of H,. In lower fields
where the London theory is more appropriate, the anisot-
ropy of 4mM; ~ (—®,/8mwA*)In(H,,/B) is effectively at-
tributed to that of the penetration depth A. Extending
knowledge of the relation between the ¢ and the A anisot-
ropies based on the anisotropic GL equation [25], a
naive relation H,(y = 0)/H,(x = 7/4) ~ A2(y =
0)/A%(xy = m/4) is expected to hold, where A(y) means
an effective penetration depth perpendicular to H.(y).
Namely, if H,, is larger, then 1/A% is expected to be
smaller, and this causes the sign reversal of the M;(y)
oscillation.

Before ending we briefly discuss the origin of the pecu-
liar angular variation of M} (y) seen in Refs. [11,12]. The
low field M, (y) [11,12] have sharp maxima around the
[100] and [010] directions, and broader minima around the
[110] and [110] directions. The sharp maxima remind us of
the observed cusplike minima of thermal conductivity and
specific heat [1,2] around the [100] and [010] directions.
These have been argued as a result of the so-called
“s + g” pairing function [1]. We calculated M, (y) for
the pairing w, o [1 — sin*6 cos4(¢p + x)] with point
nodes keeping 8 = 0.4. However, no such characteristic
structure was observed in the angular dependence of
M, (x). This means that explanations for the observed
structure of M; (y) may need a different mechanism.

In conclusion, we have microscopically studied field-
angle-resolved basal plane magnetization oscillations, and
demonstrated not only that a careful measurement of the
magnetization can be a potentially useful tool to identify
the nodal position of the gap function when a material of
interest possesses less anisotropic FS, but also that the
experimental data for borocarbides are well reproduced
by considering both gap and FS anisotropies. If combined
with other field-angle-resolved quantities [26], such as
specific heat and thermal conductivity at low temperatures,
we can further narrow the possible pairing symmetry or
gap anisotropy in various conventional and unconventional
superconductors. The lesson from borocarbides tells us that
for materials with unusually strong FS anisotropy such as
borocarbides we should be careful to judge the nodal
position through magnetization measurements, since un-
usually strong FS anisotropy can reverse the conclusion.

After the submission of the first manuscript we learned
about a preprint by Kusunose [27] which studies the effect
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FIG. 4. Logarithmic field dependence of 6M; = M;(y =
7/4) —M;(y =0) for «a =1,8=04 at T/T. = 0.6. Inset:
The sign reversal field B* in the B-T phase diagram. The H,.,
is determined through linear extrapolations of M| .

of the gap anisotropy alone based on a simplified version of
our treatment. The result is consistent with ours when only
gap anisotropy is considered.

We acknowledge useful discussions with T. Sakakibara
and Y. Matsuda.
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