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Extended Hubbard Model with Ring Exchange: A Route to a Non-Abelian Topological Phase

Michael Freedman,' Chetan Nayak,'? and Kirill Shtengel’
'Microsoft Research, One Microsoft Way, Redmond, Washington 98052, USA

“Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547, USA
(Received 11 December 2003; published 14 February 2005)

We propose an extended Hubbard model on a 2D kagomé lattice with an additional ring exchange term.
The particles can be either bosons or spinless fermions. We analyze the model at the special filling fraction
1/6, where it is closely related to the quantum dimer model. We show how to arrive at an exactly soluble
point whose ground state is the “‘d-isotopy’’ transition point into a stable phase with a certain type of non-
Abelian topological order. Near the “special” values, d = 2 cosw/(k + 2), this topological phase has
anyonic excitations closely related to SU(2) Chern-Simons theory at level k.
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Since the discovery of the fractional quantum Hall effect
in 1982 [1], topological phases of electrons have been a
subject of great interest. Many Abelian topological phases
have been discovered in the context of the quantum Hall
regime [2]. More recently, high-temperature superconduc-
tivity [3—9] and other complex materials have provided the
impetus for further theoretical studies of and experimental
searches for Abelian topological phases. The types of
microscopic models admitting such phases are now better
understood [10-12].

Much less is known about non-Abelian topological
phases, apart from some tantalizing hints that the quantum
Hall plateau observed at ¥ = 5/2 might correspond to such
a non-Abelian phase [13-16]. However, non-Abelian to-
pological states, if created and controlled, would open the
door to scalable quantum computation [17,18]. As a first
step, the study of a class of topological field theories has
been reduced to combinatorial manipulations of loops on a
surface [19,20]. A virtue of this formulation is that it
exposes a strategy for constructing microscopic physical
models which admit the corresponding phases; since
Hilbert space is reduced to a set of pictorial rules, the
models should impose these rules as energetically favor-
able conditions satisfied by the ground state (GS). In this
Letter, we show how this approach can be implemented.

We propose a microscopic model which has the follow-
ing properties: (a) it is an extension of the Hubbard model
and, therefore, is quasirealistic, (b) it is soluble, and (c) for
certain model parameters, it is perched at a transition point
[21] into a non-Abelian topological phase relevant to
quantum computation. By quasirealistic, we mean that
the model has short-ranged interactions and hopping, so
it is possible that the Hamiltonian of a real material could
be viewed as a small perturbation of our Hamiltonian.
Optical lattices [22], quantum dot arrays, or Josephson
junction arrays [23] might be designed with Hamilton-
ians in this general class and thus can be promising avenues
for realizing our model.

The aforementioned non-Abelian topological phases
are related to the doubled SU(2), Chern-Simons theories
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[20,24]. These phases are characterized by (k + 1)>-fold
GS degeneracy on a torus and should be viewed as a natural
family containing the topological (deconfined) phase of Z,
gauge theory as its initial element, k = 1. For k = 2 the
excitations are non-Abelian. For k =3 and k=5 the
excitations are computationally universal [25]. Here, we
describe the conditions which a microscopic model should
satisfy to be in such a topological phase. It is useful to think
of such a microscopic model as a lattice regularization of a
continuum model whose low-energy Hilbert space may be
described as a quantum loop gas. More precisely, a state is
defined as a collection of nonintersecting loops [21,24,26].
A Hamiltonian acting on it can do the following: (i) the
loops can be continuously deformed—we call this an
isotopy move; (ii) a small loop can be created or annihi-
lated—the combined effect of this move and the isotopy
move has been dubbed ““d isotopy”” [20,21,24]; (iii) finally,
when exactly k& + 1 strands come together in some local
neighborhood, the Hamiltonian can cut them and reconnect
the resulting “loose ends” pairwise so that the newly
formed loops are still nonintersecting. More specifically,
in order for this model to be in a topological phase, the GS
of this Hamiltonian should be a superposition of all such
pictures with the additional requirements that (i) if two
pictures can be continuously deformed into each other,
their amplitudes are equal; (ii) the amplitude of a picture
with an additional loop is d times that of a picture without
such a loop; (iii) this superposition is annihilated by the
application of the Jones-Wenzl (JW) projector that acts
locally by reconnecting k + 1 strands. Readers interested
in the details are referred to [20,24,26] and references
therein. In this Letter, we focus on the first two conditions,
which place the system at a transition point into the desired
phase(s) [21]; our purpose is to construct a Hamiltonian
which enforces d isotopy for its ground state(s).

Our proposed model is defined on the kagomé lattice
shown in Fig. 1. The sites of the lattice are not completely
equivalent; in particular, we choose two special sublatti-
ces—R (red) and G (green) whose significance will be
discussed later. The Hamiltonian is given by

© 2005 The American Physical Society



PRL 94, 066401 (2005)

PHYSICAL REVIEW LETTERS

week ending
18 FEBRUARY 2005

H= Z:,u,-n,» + UOXH% +U Z nin;

@i, j)eo

+ Z Vinin; — Ztij(c:r

((F))=e; (i.j)

c; + c}Lc,-) + T (1)

Here n; = ler ¢, 1s the occupation number on site i, and wu;
is the corresponding chemical potential. U, is the usual
on-site Hubbard energy (clearly superfluous for spinless
fermions). U is a (positive) Coulomb penalty for having
two particles on the same hexagon while V;; represent a
penalty for two particles occupying the opposite corners
of “bow ties” (in other words, being next-nearest neigh-
bors on one of the straight lines). We do not assume that all
V;; are equal. Specifically, V;; = v(, where a is the color of
51te (i), b is that of (j), and ¢ 1s the color of the site between
them. So for the lattice in Fig. 1 we have v, vp,, v§,, v7,
and v,g, where rER, g€ G, and b € B= K\(RU
G). The nearest-neighbor tunneling amplitude ¢;; is also
assumed to depend on the color of the environment: 7;; =
t¢, where ¢ now refers to the color of the third site in a
triangle. Finally, we include Tr —a four-particle ring ex-
change term whose exact form will be specified later. T is
added to the Hamiltonian on an ad hoc basis to allow
correlated multiparticle hops. Ring exchange terms can
be justified semiclassically [27], and they do, indeed, ap-
pear in such physical systems as spin systems [28,29], solid
3He [30], and Wigner crystals [31]. Of course, small ring
terms can arise perturbatively along the lines of [29]; e.g., a
four-particle move occurs at order 4.

The on-site Hubbard energy U, is assumed to be the
biggest energy in the problem, and we shall set it to infinity,
thereby restricting our attention to the low-energy mani-
fold with sites either unoccupied or singly occupied. The
rest of the energies satisfy the following relations: U >
tij, Vij, > we shall be more specific about relations bet-
ween various ;;’s, V;;’s and u;’s later.

The ‘“undoped” system corresponds to the filling frac-
tion 1/6. The lowest-energy band then consists of configu-
rations in which there is exactly one particle per hexagon;
hence, all U terms vanish. These states are easier to visual-

FIG. 1 (color). Solid dots and dashed lines represent sites and
bonds of the kagomé lattice JC with the special sublattices R
(red) and G (green). XK is a surrounding lattice for a triangular
lattice T~ (solid lines).

ize if we consider a triangular lattice 7 whose sites co-
incide with the centers of hexagons of K. (X is a sur-
rounding lattice for 7".) Then a particle on K is repre-
sented by a dimer on 7 connecting the centers of two
adjacent hexagons of K. The condition of one particle per
hexagon translates into the requirement that no dimers
share a site. In the 1/6-filled case this low-energy manifold
coincides with the set of all dimer coverings (perfect
matchings) of T . The “red” bonds of T (the ones corre-
sponding to the sublattice R) themselves form one such
dimer covering, a so-called “staggered configuration,
which contains no “flippable plaquettes,” or rhombi with
two opposing sides occupied by dimers (see Fig. 1).

So, henceforth, particles live on bonds of the triangular
lattice (Fig. 1) and are represented as dimers [32]. In
particular, a particle hop corresponds to a dimer “pivot-
ing” by 60° around one of its end points, and V;; = v, is
now a potential energy of two parallel dimers on two
opposite sides of a rhombus (with ¢ being the color of its
short diagonal). It is clear that our model is in the same
family as the quantum dimer model [4], which has recently
been shown to have an Abelian topological phase (k = 1,
d = 1) on the triangular lattice [10]. Here, we show how
other values of d can be obtained.

The goal now is to derive the effective Hamiltonian
acting on this low-energy manifold represented by all
possible dimer coverings of 7 . Our analysis is perturbative
in 1/U =: e. The initial, unperturbed GS manifold for
Uy = o, U large and positive, all ¢;;, V;; = 0, and all u;
equal is spanned by the dimerizations 17 of the triangular
lattice T . As we gradually turn on the #’s, v’s, and Tg, we
shall see what equations they should satisfy so that the
effective Hamiltonian on 2D has the desired d-isotopy
space as its ground state(s).

Since a single tunneling event in D always leads to
“collisions” (two dimers sharing an end point) with energy
penalty U, the lowest order at which the tunneling pro-
cesses contribute to the effective low-energy Hamiltonian
is 2. At this order, the tunneling term leads to two-dimer
“plaquette flips” as well as renormalization of bare on-site
potentials w; due to dimers pivoting out of their positions
and back. The bare potentials u; are chosen to maintain
equality among the renormalized f;’s. This freedom to
engineer the chemical potential landscape is essential to
finding an exactly soluble point.

Let us pause and discuss the connection between our
quantum dimer model and a desired topological phase. It is
an old idea (see e.g. [33]) to turn a dimerization (perfect
matching) J into a collection of loops by using a back-
ground dimerization R to form a transition graph R U J.
It turns out that fixing the preferred background dimeriza-
tion R as in Fig. 1, we obtain the fewest equations and also
achieve ergodicity [34] under a small set of moves. Unlike
in the usual case, the background dimerization R is not
merely a guide for the eyes, it is physically distinguished:
the chemical potentials and tunnelling amplitudes are dif-
ferent for bonds of different color.
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Let us list here the elementary dimer moves that pre-
serve the proper dimer covering condition: (i) Plaquette
(thombus) flip—a two-dimer move around a rhombus
made of two lattice triangles. Depending on whether a
red bond forms a side of such a rhombus, its diagonal, or
is not found there at all, the plaquettes are referred to,
respectively, as type 1 (or 17), 2, or 3 (see Fig. 2). The
distinction between plaquettes of type 1 and 1’ is purely
directional; it is necessary since our Hamiltonian breaks
the rotational symmetry of a triangular (or kagomé) lattice.
(ii) Triangle move—a three-dimer move around a triangle
made of four elementary triangles, e.g., 4 in Fig. 2.
(iii) Bow tie move—a four-dimer move around a ‘“‘bow
tie”’ made of six elementary triangles, e.g., 5 in Fig. 2.

To make each of these moves possible, the actual dimers
and unoccupied bonds should alternate around a corre-
sponding shape. Notice that for both triangle and bow tie
moves we chose to depict the cases with the maximal
possible number of participating red bonds (two and four,
respectively). Note that there are no alternating red or
black rings of fewer than eight bonds (occupied by at
most four noncolliding dimers). Ring moves occur only
when red bonds and dimers alternate; the triangle labeled 4
in Fig. 2 does not have a ring exchange term associated
with it, but the bow tie labeled 5 does:

Here is the correspondence between the previous smooth
discussion and rhombus flips relating dimerizations J of
T . Our surface is now a planar domain with, possibly,
periodic boundary conditions (a torus). A collection of
loops is generated by R U J (with the convention that
the dimers of R N J be considered as length 2 loops or
bigons). What about isotopy? Move 2 certainly is an iso-
topy from R U J to R U J', but by itself, it does almost
nothing. It is impossible to build up large moves from
type 2 alone. So it is a peculiarity of the rhombus flips
that we have no good analog of isotopy alone but instead go
directly to d isotopy. We should impose the following
relations associated with moves of type 1 (1'):

TR=a

. 2

FIG. 2 (color). Overlap of a dimer covering of T (shown in
thick black) with the red covering corresponding to the special
sublattice R. Shaded plaquettes correspond to various dimer
moves described in the text. Green sublattice is not shown.

d¥((7)- ¥ (Z)=0 3)

since we pass from zero to one loop in (3). Additionally, the
ring exchange term (2) annihilates the superposition of one
and four loops; we therefore require that A = a3,

Having stated our goal, we now derive the effective
Hamiltonian H:D — D on the span of dimerizations.
The derivation is perturbative to the second order in €
where € =1;,/U =15, /U. Additionally, 15,/U = cqe
where ¢ is a positive constant, while 75, = o(e) and can
be neglected in the second-order calculations. (In the ab-
sence of a magnetic field all #’s can be made real and hence
symmetric with respect to their lower indices. Also, we set
U =1 for notational convenience.) We account for all
second-order processes taking us out of D and then back
to D. These amount to off-diagonal (hopping) processes—
“plaquette flips” or “rhombus moves” —as well as di-
agonal ones in which a dimer pivots out and then back into
its original position. The latter processes renormalize the
bare on-site potentials w;, which we should adjust to keep
all renormalized potentials fi; equal up to corrections
O(€®). The effective Hamiltonian then comes from the
former processes and can be written in the form: H =
S 7(Hry®1)Ar; where Hyj is a 2 X 2 matrix corre-
sponding to a dimer move in the two-dimensional basis of
dimer configurations connected by this move. Ay; = 1 if
the dimerizations I, J € D are connected by an allowed
move, Ay = 0 otherwise. Therefore, it suffices to specify
these 2 X 2 matrices H 7 for the off-diagonal processes.
For moves of types (1)—(3), they are given below:

40— UZb —2tlr’btgb B UZh —2cy€? 4
N\ =g gt b | Zocne? y ) 4
rhlgp  Urp Co€™ Uy,
I:I(l/) _ va _th*]b tgb _ vlljb _2C0€2 4b
=2t g v’ N —2cpe2 WP » (D)
rb*gb rg 0 rb
0 — viy 20,7\ _( vy —2€ (4c)
_Z(Zr )2 u" —2e2 " ’ ¢
bb bb bb
por—( e T2 (v O (4d)
—2(5,)2  f 0 vs |
bb bb bb

We now tune H to the “small loop” value d by requiring

N . d -1
H<1>=H<'>oc<_1 d_1>

as these moves change the number of small loops by one
[cf. Eq. (3)]. Since a move of type 2 is just an isotopy move,
we require H? o (I — ¢). Finally, H® = 0 provided
k > 1, since it represents a ‘“‘surgery”’ on two strands not
allowed for k > 1. [For k = 1, on the other hand, H® o
(I — %) since configurations which differ by such a sur-
gery should have equal coefficients in any GS vector V.]
Thus, for k£ > 1 the matrix relations (4a)—(4d) yield equa-
tions in the model parameters:
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types (1)&(1') : vgb = vh, = 2dc,€? (52)
and vl = v, =2d 'cy€?, (5b)
types (2)&(3) : v}, =2€* and v}, =0. (5¢)

Finally, the bare ring exchange term, T, given by
Eq. (2) becomes in matrix notation

2 _
Ty = a< A )

where A = d* according to the discussion after Eq. (3).
Additionally, the off-diagonal elements of Ty should be of
order €* in order for this ring exchange to dominate all
other ring exchanges that will appear in the higher orders
of perturbation theory. (There is, however, some leeway in
defining T, as discussed in [26].) Along with Egs. (5),
these conditions place our model at the soluble point
characterized by d isotopy.

This construction shows how an extended Hubbard
model with an additional ring exchange term (or the
equivalent quantum dimer model) can be tuned to the
d-isotopy state(s). As discussed earlier, they satisfy two
of the three conditions that define a class of stable, gapped
topological phases which are centered about the special
values d = 2 cos(7/k + 2). The next step is to understand
how perturbations can push the system (by implementing
the JW projectors) into these phases. Our simplest candi-
date for a “universal quantum computer’” is associated
with d = (1 + +/5)/2.
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